342
Views
14
CrossRef citations to date
0
Altmetric
Articles

Green synthesis of magnetic 3D bio-adsorbent by corn straw core and chitosan for methylene blue removal

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2109-2121 | Received 06 Jul 2018, Accepted 30 Nov 2018, Published online: 13 Dec 2018

References

  • Igoumenidis PE, Lekka EG, Karathanos VT. Fortification of white milled rice with phytochemicals during cooking in aqueous extract of Mentha spicata, leaves. An adsorption study. LWT Food Sci Technol. 2016;65:589–596. doi: 10.1016/j.lwt.2015.07.012
  • Shu J, Liu R, Qiu J, et al. Simultaneous removal of ammonia nitrogen and manganese from wastewater using nitrite by electrochemical method. Environ Technol. 2017;38:370–376. doi: 10.1080/09593330.2016.1194482
  • Basha CA, Bhadrinarayana NS, Anantharaman N, et al. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. J Hazard Mater. 2008;152:71–78. doi: 10.1016/j.jhazmat.2007.06.069
  • Yan H, Yang L, Yang Z, et al. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J Hazard Mater. 2012;229–230:371–380. doi: 10.1016/j.jhazmat.2012.06.014
  • Franco PE, Veit MT, Borba CE, et al. Nickel(II) and zinc(II) removal using Amberlite IR-120 resin: Ion exchange equilibrium and kinetics. Chem Eng J. 2013;221:426–435. doi: 10.1016/j.cej.2013.02.006
  • Gao J, Sun S, Zhu W, et al. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Res. 2014;63:252–261. doi: 10.1016/j.watres.2014.06.006
  • El Samrani AG, Lartiges BS, Villiéras F. Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res. 2008;42:951–960. doi: 10.1016/j.watres.2007.09.009
  • Zhang C, Lin H, Chen J, et al. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor. Environ Technol. 2013;34:2371–2376. doi: 10.1080/09593330.2013.770559
  • Yuan HP, Nie JY, Gu L, et al. Studies on affecting factors and mechanism of treating decentralized domestic sewage by a novel anti-clogging soil infiltration system. Environ Technol. 2016;37:3071–3077. doi: 10.1080/09593330.2016.1175514
  • Zhou YY, Liu XC, Tang L, et al. Insight into highly efficient co-removal of p -nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: performance and modelling. J Hazard Mater. 2017a;333:80–87. doi: 10.1016/j.jhazmat.2017.03.031
  • Zhou YY, Liu XC, Xiang YJ, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour Technol. 2017b;245:266–273. doi: 10.1016/j.biortech.2017.08.178
  • Zhou YY, Zhang FF, Tang L, et al. Simultaneous removal of atrazine and copper using polyacrylic acidfunctionalized magnetic ordered mesoporous carbon from water: adsorption mechanism. Sci Rep. 2017c;7:43831.
  • Zhou YY, He YZ, Xiang YJ, et al. Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous solutions by oxidized multiwalled carbon nanotube. Sci Total Environ. 2019;646:29–36.
  • Ge HY, Wang CC, Liu SS, et al. Synthesis of citric acid functionalized magnetic graphene oxide coated corn straw for methylene blue adsorption. Bioresour Technol. 2016;221:419–429. doi: 10.1016/j.biortech.2016.09.060
  • Ma DZ, Zhu BD, Cao B, et al. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution. Appl Surf Sci. 2017;422:944–952. doi: 10.1016/j.apsusc.2017.06.072
  • Qin RH, Li FS, Chen MY, et al. Preparation of chitosan–ethylenediaminetetraacetate-enwrapped magnetic CoFe2O4, nanoparticles via zero-length emulsion crosslinking method. Appl Surf Sci. 2009;256(1):27–32. doi: 10.1016/j.apsusc.2009.07.032
  • Jiang SW, Yu ZY, Hu HL, et al. Adsorption of procyanidins onto chitosan-modified porous rice starch. LWT Food Sci Technol. 2017;84:10–17. doi: 10.1016/j.lwt.2017.05.047
  • Xing JS, Wang XJ, Xun JJ, et al. Preparation of micro-nanofibrous chitosan sponges with ternary solvents for dye adsorption. Carbohyd Polym. 2018;198:69–75. doi: 10.1016/j.carbpol.2018.06.064
  • Bagheri M, Younesi H, Hajati S, et al. Application of chitosan-citric acid nanoparticles for removal of chromium (VI). Int J Biol Macromol. 2015;80:431–444. doi: 10.1016/j.ijbiomac.2015.07.022
  • Zhang KC, Gao XB, Zhang Q, et al. Preparation and microwave absorption properties of asphalt carbon coated reduced graphene oxide/magnetic CoFe2O4 hollow particles modified multi-wall carbon nanotube composites. J Alloy Compd. 2017;723:912–921. doi: 10.1016/j.jallcom.2017.06.327
  • Feng JT, Wang YC, Hou YH, et al. Synthesis and microwave absorption properties of coiled carbon nanotubes/CoFe2O4 composites. Ceram Int. 2016;42(15):17814–17821. doi: 10.1016/j.ceramint.2016.08.110
  • Liu XY, Liu MY, Zhang L. Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere. J Colloid Interf Sci. 2018;511:135–144. doi: 10.1016/j.jcis.2017.09.105
  • Shi WL, Guo F, Wang HB, et al. Kang ZH carbon dots decorated magnetic ZnFe2O4 nanoparticles with enhanced adsorption capacity for the removal of dye from aqueous solution. Appl Surf Sci. 2018;433:790–797. doi: 10.1016/j.apsusc.2017.10.099
  • Li XL, Lu HJ, Zhang Y, et al. Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chem Eng J. 2017;316:893–902. doi: 10.1016/j.cej.2017.02.037
  • Zhang YK, Yan LG, Xu WY, et al. Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. J Mol Liq. 2014;191:177–182. doi: 10.1016/j.molliq.2013.12.015
  • Li XL, Lu HJ, Zhang Y, et al. Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal. Appl Surf Sci. 2016;389:567–577. doi: 10.1016/j.apsusc.2016.07.162
  • Song T, Yu C, He X, et al. Synthesis of magnetically separable porous BN microrods@Fe3O4 nanocomposites for Pb(II) adsorption. Colloid Surface A. 2018;537:508–515. doi: 10.1016/j.colsurfa.2017.10.060
  • Zhang P, Lo I, O’Connor D, et al. High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles. J Colloid Interf Sci. 2017;508:39–48. doi: 10.1016/j.jcis.2017.08.025
  • Wei X, Huang T, Yang JH, et al. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. J Hazard Mater. 2017;335:28–38. doi: 10.1016/j.jhazmat.2017.04.030
  • Wang CC, Yang SD, Ma Q, et al. Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds. Carbon N Y. 2017;118:765–771. doi: 10.1016/j.carbon.2017.04.001
  • Santhosh C, Daneshvar E, Kollu P, et al. Magnetic SiO2@CoFe2O4 nanoparticles decorated on graphene oxide as efficient adsorbents for the removal of anionic pollutants from water. Chem Eng J. 2017;322:472–487. doi: 10.1016/j.cej.2017.03.144
  • Fathi MR, Asfaram A, Farhangi A. Removal of Direct Red 23 from aqueous solution using corn stalks: isotherms, kinetics and thermodynamic studies. Spectrochim Acta, Part A. 2015;135:364–372. doi: 10.1016/j.saa.2014.07.008
  • Karunakaran G, Kundu M, Maduraiveeran G, et al. Hollow mesoporous heterostructures negative electrode comprised of CoFe2O4@Fe3O4 for next generation lithium ion batteries. Micropor Mesopor Mat. 2018;272:1–7. doi: 10.1016/j.micromeso.2018.06.005
  • Li XH, Feng J, Du YP, et al. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J Mater Chem. 2015;3:5535–5546. doi: 10.1039/C4TA05718J
  • Şener T, Kayhan E, Sevim M, et al. Monodisperse CoFe2O4, nanoparticles supported on Vulcan XC-72: high performance electrode materials for lithium-air and lithium-ion batteries. J Power Sources. 2015;288:36–41. doi: 10.1016/j.jpowsour.2015.04.120
  • Ondaral S, Çelik E, Kurtuluş OÇ, et al. Chitosan adsorption on nanofibrillated cellulose with different aldehyde content and interaction with phosphate buffered saline. Carbohyd Polym. 2018;186:192–199. doi: 10.1016/j.carbpol.2017.12.028
  • Gul K, Sohni S, Waqar M, et al. Functionalization of magnetic chitosan with graphene oxide for removal of cationic and anionic dyes from aqueous solution. Carbohyd Polym. 2016;152:520–531. doi: 10.1016/j.carbpol.2016.06.045
  • Yu BW, Zhang XL, Xie JR, et al. Magnetic graphene sponge for the removal of methylene blue. Appl Surf Sci. 2015;351:765–771. doi: 10.1016/j.apsusc.2015.05.185
  • Guo JX, Shu S, Liu XL, et al. Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid. Environ Technol. 2016;38:266–276. doi: 10.1080/09593330.2016.1189973
  • Zhou LM, Liu ZR, Liu JH, et al. Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination. 2010;258(1):41–47. doi: 10.1016/j.desal.2010.03.051
  • Liu SS, Ge HY, Wang CC, et al. Agricultural waste/graphene oxide 3D bio-adsorbent for highly efficient removal of methylene blue from water pollution. Sci Total Environ. 2018: 628–629:959–968. doi: 10.1016/j.scitotenv.2018.02.134
  • Lin JF, Tsai CC, Lee MZ. Linear birefringence and dichroism in citric acid coated Fe3O4 magnetic nanoparticles. J Magn Magn Mater. 2014: 372:147–158. doi: 10.1016/j.jmmm.2014.07.064
  • Li Y, Li Z, Xu F, et al. Superconducting magnetic separation of phosphate using freshly formed hydrous ferric oxide sols. Environ Technol. 2016;38:377–384. doi: 10.1080/09593330.2016.1195449
  • Dong YZ, Piao SH, Zhang K, et al. Effect of CoFe2O4 nanoparticles on a carbonyl iron based magnetorheological suspension. Colloid Surface A. 2018;537:102–108. doi: 10.1016/j.colsurfa.2017.10.017
  • Song NN, Gu SZ, Wu Q, et al. Facile synthesis and high-frequency performance of CoFe2O4 nanocubes with different size. J Magn Magn Mater. 2018;451:793–798. doi: 10.1016/j.jmmm.2017.12.019
  • Naseeruteen F, Nsa H, Fbm S, et al. Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. Int J Biol Macromol. 2018;107:1270–1277. doi: 10.1016/j.ijbiomac.2017.09.111
  • Minamisawaa H, Iwanamia H, Araia N, et al. Adsorption behavior of cobalt(II) on chitosan and its determination by tungsten metal furnace atomic absorption spectrometry. Anal Chim Acta. 1999;378:279–285. doi: 10.1016/S0003-2670(98)00641-2
  • Ji XD, Li B, Yuan BN, et al. Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance. Carbohyd Polym. 2017;176:273–280. doi: 10.1016/j.carbpol.2017.08.100
  • Yu Y, Murthy BN, Shapter JG, et al. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. J Hazard Mater. 2013;260(6):330–333. doi: 10.1016/j.jhazmat.2013.05.041
  • Chang YH, Huang CF, Hsu WJ, et al. Removal of Hg2+ from aqueous solution using alginate gel containing chitosan. J Appl Polym Sci. 2007;104:2896–2905. doi: 10.1002/app.25891
  • Liu QR, Gao YX. Binary adsorption isotherm and kinetics on debittering process of ponkan (Citrus reticulata Blanco) juice with macroporous resins. LWT Food Sci Technol. 2015;63:1245–1253. doi: 10.1016/j.lwt.2015.04.018
  • Maleki A, Sadeghi U, Daraei H, et al. Amine functionalized multi-walled carbon nanotubes: single and binary systems for high capacity dye removal. Chem Eng J. 2017;313:826–835. doi: 10.1016/j.cej.2016.10.058
  • Hameed BH, Daud FBM. Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chem Eng J. 2008;139:48–55. doi: 10.1016/j.cej.2007.07.089
  • Cui LM, Wang YG, Gao L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem Eng J. 2015;281:1–10. doi: 10.1016/j.cej.2015.06.043
  • Wang LX, Li JC, Jiang Q, et al. Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans. 2012;41:4544–4551. doi: 10.1039/c2dt11827k
  • Gustafsson JP, Akram M, Tiberg C. Predicting sulphate adsorption/desorption in forest soils: evaluation of an extended Freundlich equation. Chemosphere. 2015;119:83–89. doi: 10.1016/j.chemosphere.2014.05.067
  • Araújo CST, Almeida ILS, Rezende HC, et al. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem J. 2018;137:348–354. doi: 10.1016/j.microc.2017.11.009
  • Zhu YF, Zheng YA, Wang F, et al. Monolithic supermacroporous hydrogel prepared from high internal phase emulsions (HIPEs) for fast removal of Cu2+ and Pb2+. Chem Eng J. 2016;284:422–430. doi: 10.1016/j.cej.2015.08.157
  • Hajati S, Ghaedi M, Barazesh B, et al. Application of high order derivative spectrophotometry to resolve the spectra overlap between BG and MB for the simultaneous determination of them: Ruthenium nanoparticle loaded activated carbon as adsorbent. J Ind Eng Chem. 2014;20:2421–2427. doi: 10.1016/j.jiec.2013.10.022
  • Ghaedi M, Hajati S, Zare M, et al. Experimental design for simultaneous analysis of malachite green and methylene blue; derivative spectrophotometry and principal component-artificial neural network. RSC Adv. 2015;5:38939–38947. doi: 10.1039/C5RA02531A
  • Atia A, Donia AM, El-Boraey HA, et al. Adsorption of Ag(I) on glycidyl methacrylate/N, N-methylene bis-acrylamide chelating resins with embedded iron oxide. Sep Purif Technol. 2006;48:281–287. doi: 10.1016/j.seppur.2005.07.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.