244
Views
4
CrossRef citations to date
0
Altmetric
Articles

Phosphorus and ammonium removal characteristics from aqueous solutions by a newly isolated plant growth-promoting bacterium

, , , , , & show all
Pages 2603-2617 | Received 06 Sep 2018, Accepted 19 Jan 2019, Published online: 07 Feb 2019

References

  • Jarvie HP, Sharpley AN, Flaten D, et al. The pivotal role of phosphorus in a resilient water–energy–food security nexus. J Environ Quality. 2015;44:1049. doi: 10.2134/jeq2015.01.0030
  • Heffer P, Prud’homme M. Fertilizer outlook 2017–2021. 85th IFA Annual Conference, Marrakech, Morocco; 2017. p. 1–7.
  • Cordell D, Rosemarin A, Schröder JJ, et al. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere. 2011;84:747–758. doi: 10.1016/j.chemosphere.2011.02.032
  • Kataki S, West H, Clarke M, et al. Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recycl. 2016;107:142–156. doi: 10.1016/j.resconrec.2015.12.009
  • Jellali S, Wahab MA, Ben HR, et al. Adsorption characteristics of phosphorus from aqueous solutions onto phosphate mine wastes. Chem Eng J. 2011;169:157–165. doi: 10.1016/j.cej.2011.02.076
  • Haddad K, Jellali S, Jeguirim M, et al. Investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust. J Environ Manage. 2018;216:305–314. doi: 10.1016/j.jenvman.2017.06.020
  • Bunce JT, Ndam E, Ofiteru ID, et al. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front Environ Sci. 2018;6:1–15. doi: 10.3389/fenvs.2018.00008
  • Wu H, Fan J, Zhang J, et al. Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment. Environ Sci Pollut Res. 2015;22:14637–14650. doi: 10.1007/s11356-015-5151-x
  • Avellan CT, Ardakanian R, Gremillion P. The role of constructed wetlands for biomass production within the water-soil-waste nexus. Water Sci Technol. 2017;75:2237–2245. doi: 10.2166/wst.2017.106
  • Du L, Chen Q, Liu P, et al. Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by Integrated vertical-flow constructed wetlands (IVCWs). Bioresour Technol. 2017;243:204–211. doi: 10.1016/j.biortech.2017.06.092
  • Vymazal J. Removal of nutrients in various types of constructed wetlands. Sci Total Environ. 2007;380:48–65. doi: 10.1016/j.scitotenv.2006.09.014
  • Truu J, Truu M, Espenberg M, et al. Phytoremediation and plant-Assisted bioremediation In soil And treatment wetlands: a review. Open Biotechnol J. 2015;9:85–92. doi: 10.2174/1874070701509010085
  • Gebremariam SY, Beutel MW, Christian D, et al. Research advances and challenges in the microbiology of enhanced biological phosphorus removal – a critical review. Water Environ Res. 2011;83:195–219. doi: 10.2175/106143010X12780288628534
  • Shi T, Ge Y, Zhao N, et al. Polyphosphate kinase of Lysinibacillus sphaericus and its effects on accumulation of polyphosphate and bacterial growth. Microbiol Res. 2015;172:41–47. doi: 10.1016/j.micres.2014.12.002
  • Liang CM, Hung CH, Hsu SC, et al. Purple nonsulfur bacteria diversity in activated sludge and its potential phosphorus-accumulating ability under different cultivation conditions. Appl Microbiol Biotechnol. 2010;86:709–719. doi: 10.1007/s00253-009-2348-2
  • Guisasola A, Pijuan M, Baeza JA, et al. Aerobic phosphorus release linked to acetate uptake in bio-P Sludge: process modeling using oxygen uptake rate. Biotechnol Bioeng. 2004;85:722–733. doi: 10.1002/bit.10868
  • Paul D, Sinha SN. Biological removal of phosphate using phosphate solubilizing bacterial consortium from synthetic wastewater: a laboratory scale. Environ Asia. 2015;8:1–8.
  • Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012;2012:1–15. doi: 10.6064/2012/963401
  • Rivadeneyra A, Gonzalez-Martinez A, Gonzalez-Lopez J, et al. Precipitation of phosphate minerals by microorganisms isolated from a fixed-biofilm reactor used for the treatment of domestic wastewater. Int J Environ Res Public Health. 2014;11:3689–3704. doi: 10.3390/ijerph110403689
  • Rijavec T, Lapanje A. Cyanogenic Pseudomonas spp. strains are concentrated in the rhizosphere of alpine pioneer plants. Microbiol Res. 2017;194:20–28. doi: 10.1016/j.micres.2016.09.001
  • Chaudhry V, Nautiyal CS. A high throughput method and culture medium for rapid screening of phosphate accumulating microorganisms. Bioresour Technol. 2011;102:8057–8062. doi: 10.1016/j.biortech.2011.05.045
  • Ivonilde Carrim AJ, Cândida Barbosa E, Gonçalves Vieira JD. Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-do-campo). Braz Arch Biol Technol. 2006;49:353–359. doi: 10.1590/S1516-89132006000400001
  • Conn H, Breed R. The use of the nitrate-reduction test in characterizing bacteria. J Bacteriol. 1919;4:267–290. doi: 10.1128/JB.4.3.267-290.1919
  • Yanagihara K, Niki H, Baba T. Direct PCR amplification of the 16S rRNA gene from single microbial cells isolated from an Antarctic iceberg using laser microdissection microscopy. Polar Sci. 2011;5:375–382. doi: 10.1016/j.polar.2011.06.001
  • Senechkin I V, Speksnijder AGCL, Semenov AM, et al. Isolation and partial characterization of bacterial strains on low organic carbon medium from soils fertilized with different organic amendments. Microb Ecol. 2010;60:829–839. doi: 10.1007/s00248-010-9670-1
  • Carvalheira M, Oehmen A, Carvalho G, et al. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Water Res. 2014;64:149–159. doi: 10.1016/j.watres.2014.07.004
  • APHA. Standard methods for examination of water and wastewater (standard methods for the examination of water and wastewater). Standard Methods. 1998:5–16.
  • Frison N, Katsou E, Malamis S, et al. Nutrient removal via nitrite from reject water and polyhydroxyalkanoate (PHA) storage during nitrifying conditions. J Chem Technol Biotechnol. 2015;90:1802–1810. doi: 10.1002/jctb.4487
  • Zeng RJ, Saunders AM, Yuan Z, et al. Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnol Bioeng. 2003;83:140–148. doi: 10.1002/bit.10652
  • Palleroni NJ. Pseudomonas. Bergey’s Manual of Systematics of Archaea and Bacteria; 2015.
  • Kumar-Mishra R, Prakash O, Alam M, et al. Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. Herit. Recent Res Sci Technol. 2010;2:53–57. doi: 10.1002/crat.200900424
  • Zahid M, Kaleem Abbasi M, Hameed S, et al. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol. 2015;6:1–10. doi: 10.3389/fmicb.2015.00207
  • Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann Microbiol. 2010;60:579–598. doi: 10.1007/s13213-010-0117-1
  • Li HF, Li BZ, Wang ET, et al. Removal of low concentration of phosphorus from solution by free and immobilized cells of Pseudomonas stutzeri YG-24. Desalination. 2012;286:242–247. doi: 10.1016/j.desal.2011.11.029
  • Teymouri M, Karkhane M, Marzban M, et al. Designing a response surface model for Removing phosphate and organic compound from wastewater by Pseudomonas strain MT1. Proc Natl Acad Sci India Sect B – Biol Sci. 2017;87:1167–1176. doi: 10.1007/s40011-015-0686-7
  • Li C, Yang J, Wang X, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresour Technol. 2015;182:18–25. doi: 10.1016/j.biortech.2015.01.100
  • Momba MNB, Cloete TE. Biomass relationship to growth and phosphate uptake of Pseudomonas fluorescens, Escherichia coli and Acinetobacter radioresistens in mixed liquor medium. J Ind Microbiol. 1996;16:364–369. doi: 10.1007/BF01570117
  • Tobin KM, McGrath JW, Mullan A, et al. Polyphosphate accumulation by Pseudomonas putida CA-3 and other medium-chain-length polyhydroxyalkanoate-accumulating bacteria under aerobic growth conditions. Appl Environ Microbiol. 2007;73:1383–1387. doi: 10.1128/AEM.02007-06
  • Barat R, Montoya T, Seco A, et al. The role of potassium, magnesium and calcium in the enhanced biological phosphorus removal treatment plants. Environ Technol. 2005;26:983–992. doi: 10.1080/09593332608618485
  • Azhdarpoor A, Mohammadi P, Dehghani M. Simultaneous removal of nutrients in a novel anaerobic–anoxic/aerobic sequencing reactor: removal of nutrients in a novel reactor. Int J Environ Sci Technol. 2016;13:543–550. doi: 10.1007/s13762-015-0871-5
  • Yadav D, Pruthi V, Kumar P. Enhanced biological phosphorus removal in aerated stirred tank reactor using aerobic bacterial consortium. J Water Process Eng. 2016;13:61–69. doi: 10.1016/j.jwpe.2016.08.005
  • Zhang J, Wu P, Hao B, et al. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour Technol. 2011;102:9866–9869. doi: 10.1016/j.biortech.2011.07.118
  • Guo J, Peng Y, Wang S, et al. Pathways and organisms involved in ammonia oxidation and nitrous oxide emission. Crit Rev Environ Sci Technol. 2013;43:2213–2296. doi: 10.1080/10643389.2012.672072
  • Faulwetter JL, Gagnon V, Sundberg C, et al. Microbial processes influencing performance of treatment wetlands: A review. Ecol Eng. 2009;35:987–1004. doi: 10.1016/j.ecoleng.2008.12.030
  • Vera I, Verdejo N, Chávez W, et al. Influence of hydraulic retention time and plant species on performance of mesocosm subsurface constructed wetlands during municipal wastewater treatment in super-arid areas. J Environ Sci Health, Part A. 2016;51:105–113. doi: 10.1080/10934529.2015.1087732
  • Kotti IP, Gikas GD, Tsihrintzis VA. Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecol Eng. 2010;36:862–875. doi: 10.1016/j.ecoleng.2010.03.002
  • Wang D, Li X, Yang Q, et al. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source. Water Res. 2012;46:3868–3878. doi: 10.1016/j.watres.2012.04.036
  • Chen H, Wang D, Li X, et al. Effect of dissolved oxygen on biological phosphorus removal induced by aerobic/extended-idle regime. Biochem Eng J. 2014;90:27–35. doi: 10.1016/j.bej.2014.03.004
  • Li X, Chen H, Yang Q, et al. Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime. Chemosphere. 2014;105:75–81. doi: 10.1016/j.chemosphere.2013.12.043
  • Freitas F, Temudo MF, Carvalho G, et al. Robustness of sludge enriched with short SBR cycles for biological nutrient removal. Bioresour Technol. 2009;100:1969–1976. doi: 10.1016/j.biortech.2008.10.031
  • Azhdarpoor A, Abbasi L, Samaei MR. Investigation of a new double-stage aerobic-anoxic continuous-flow cyclic baffled bioreactor efficiency for wastewater nutrient removal. J Environ Manage. 2018;211:1–8. doi: 10.1016/j.jenvman.2018.01.048
  • Malde A, Gangaiah D, Chandrashekhar K, et al. Functional characterization of exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) of Campylobacter jejuni. Virulence. 2014;5:521–533. doi: 10.4161/viru.28311
  • Liu Y, Li X, Zhao J, et al. The feasibility of enhanced biological phosphorus removal in the novel oxic/extended idle process using fermentation liquid from sludge fermentation. RSC Adv. 2018;8:3321–3327. doi: 10.1039/C7RA12886J
  • Khoshmanesh A, Hart BT, Duncan A, et al. Biotic uptake and release of phosphorus by a wetland sediment. Environ Technol UK. 1999;20:85–91. doi: 10.1080/09593332008616796
  • Aldous R, Craft CB, Stevens CJ, et al. Soil phosphorus release from a restoration wetland, Upper Klamath Lake, Oregon. Wetlands. 2007;27:1025–1035. doi: 10.1672/0277-5212(2007)27[1025:SPRFAR]2.0.CO;2
  • Batzer DP, Sharitz RR. Ecology of freshwater and estuarine wetlands. An introduction. In: Batzer DP, Sharitz RR, editors. Ecology of Freshwater and Estuarine Wetlands, 2nd ed. Berkeley (CA): University of California Press; 2014.
  • Busnardo MJ, Gersberg RM, Langis R, et al. Nitrogen and phosphorus removal by wetland mesocosms subjected to different hydroperiods. Ecol Eng. 1992;1:287–307. doi: 10.1016/0925-8574(92)90012-Q
  • Zhang DQ, Tan SK, Gersberg RM, et al. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. J Environ Manage. 2012;96:1–6. doi: 10.1016/j.jenvman.2011.10.009
  • Benammar L, Menasria T, Ayachi A, et al. Phosphate removal using aerobic bacterial consortium and pure cultures isolated from activated sludge. Process Saf Environ Prot. 2015;95:237–246. doi: 10.1016/j.psep.2015.03.011
  • Su Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011;45:3351–3358. doi: 10.1016/j.watres.2011.03.046
  • Vymazal J. Constructed wetlands for treatment of industrial wastewaters: a review. Ecol Eng. 2014;73:724–751. doi: 10.1016/j.ecoleng.2014.09.034
  • Mikosz J. Determination of permissible industrial pollution load at a municipal wastewater treatment plant. Int J Environ Sci Technol. 2015;12:827–836. doi: 10.1007/s13762-013-0472-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.