308
Views
2
CrossRef citations to date
0
Altmetric
Articles

Bacterial diversity in phosphorus immobilization of the South China Sea

, , , &
Pages 2844-2853 | Received 02 Oct 2018, Accepted 17 Feb 2019, Published online: 05 Mar 2019

References

  • Küster-Heins K, Steinmetz E, Lange GJD, et al. Phosphorus cycling in marine sediments from the continental margin off Namibia. Mar Geol. 2010;274:95–106. doi: 10.1016/j.margeo.2010.03.008
  • De Duve C. Blueprint for a cell: The nature and origin of life. Burlington, NC: N. Patterson; 1991.
  • Benitez-Nelson CR. The biogeochemical cycling of phosphorus in marine systems. Earth-Sci Rev. 2000;51:109–135. doi: 10.1016/S0012-8252(00)00018-0
  • Filippelli GM. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere. 2011;84:759–766. doi: 10.1016/j.chemosphere.2011.02.019
  • James E, Elena B. Phosphorus cycle: A broken biogeochemical cycle. Nature. 2011;478:29. doi: 10.1038/478029a
  • Withers PJ, Jarvie HP. Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ. 2008;400:379–395. doi: 10.1016/j.scitotenv.2008.08.002
  • Maitra N, Manna SK, Samanta S, et al. Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems. Hydrobiologia. 2015;745:69–83. doi: 10.1007/s10750-014-2094-z
  • Diaz J, Ingall E, Benitez-Nelson C, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652. doi: 10.1126/science.1151751
  • Omelon S, Ariganello M, Bonucci E, et al. A review of phosphate mineral nucleation in biology and geobiology. Calcified Tissue Int. 2013;93:382. doi: 10.1007/s00223-013-9784-9
  • Karl DM. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. Annu Rev Mar Sci. 2014;6:279–337. doi: 10.1146/annurev-marine-010213-135046
  • Jiang L, Wang M, Wang Y, et al. The condition optimization and mechanism of aerobic phosphorus removal by marine bacterium Shewanella sp. Chem Eng J. 2018;345:611–620. doi: 10.1016/j.cej.2018.01.097
  • YaacovNathan BJ, Loewenthal R, et al. Role of bacteria in phosphorite genesis. Geomicrobiol J. 1993;11:69–76. doi: 10.1080/01490459309377935
  • Brüchert V, Bo BJ, Neumann K, et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim A. 2003;67:4505–4518. doi: 10.1016/S0016-7037(03)00275-8
  • Goldhammer T, Brüchert V, Ferdelman TG, et al. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat Geosci. 2010;3:557–561. doi: 10.1038/ngeo913
  • Schulz HN, Schulz HD. Large sulfur bacteria and the formation of phosphorite. Science. 2005;307:416–418. doi: 10.1126/science.1103096
  • Schulz HN, Brinkhoff T, Ferdelman TG, et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science. 1999;284:493–495. doi: 10.1126/science.284.5413.493
  • Satpute SK, Banat IM, Dhakephalkar PK, et al. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv. 2010;28:436–450. doi: 10.1016/j.biotechadv.2010.02.006
  • Fang P, He X, Li J, et al. Impact of sodium ion on multivalent metal ion content in extracellular polymeric substances of granular sludge from an expanded granular sludge bed. Environ Technol. 2018: 1–31. doi: 10.1080/09593330.2017.1293164
  • Wang Y, Guo G, Wang H, et al. Long-term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems. Water Res. 2013;47:5326–5337. doi: 10.1016/j.watres.2013.06.013
  • Zhang HL, Fang W, Wang YP, et al. Phosphorus removal in an enhanced biological phosphorus removal process: roles of extracellular polymeric substances. Environ Sci Technol. 2013;47:11482–11489. doi: 10.1021/es403227p
  • Li WW, Zhang HL, Sheng GP, et al. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. Water Res. 2015;86:85–95. doi: 10.1016/j.watres.2015.06.034
  • Huang W, Cai W, Huang H, et al. Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge. Water Res. 2015;68:423–431. doi: 10.1016/j.watres.2014.09.054
  • Medeiros JJG, Cid BP, Gómez EF. Analytical phosphorus fractionation in sewage sludge and sediment samples. Anal Bioanal Chem. 2005;381:873–878. doi: 10.1007/s00216-004-2989-z
  • Gilcreas FW. Standard methods for the examination of water and waste water. Washington, DC: American Public Health Association; 1998.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265.
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–356. doi: 10.1021/ac60111a017
  • Jiang H, Dong H, Ji S, et al. Microbial diversity in the deep marine sediments from the qiongdongnan basin in South China Sea. Geomicrobiol J. 2007;24:505–517. doi: 10.1080/01490450701572473
  • Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: The unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–6583. doi: 10.1073/pnas.95.12.6578
  • Estrada M, Bayergiraldi M, Felipe J, et al. Light and nutrient effects on microbial communities collected during spring and summer in the Beaufort Sea. Aquat Microb Ecol. 2009;54:217–231. doi: 10.3354/ame01268
  • Cho S, Kim J, Kim S, et al. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment. Environ Technol. 2017;39(13):1721–1732. doi: 10.1080/09593330.2017.1337234
  • Zhang Y, Chen L, Sun R, et al. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay. J Environ Sci China. 2016;44:57–68. doi: 10.1016/j.jes.2015.11.023
  • Liu H, Sun X, Yin C, et al. Removal of phosphate by mesoporous ZrO2. J Hazard Mater. 2008;151:616–622. doi: 10.1016/j.jhazmat.2007.06.033
  • Uygur A. Specific nutrient removal rates in saline wastewater treatment using sequencing batch reactor. Process Biochem. 2006;41:61–66. doi: 10.1016/j.procbio.2005.03.068
  • Chen J, Han Y, Wang Y, et al. Start-up and microbial communities of a simultaneous nitrogen removal system for high salinity and high nitrogen organic wastewater via heterotrophic nitrification. Bioresource Technol. 2016;216:196–202. doi: 10.1016/j.biortech.2016.05.064
  • Guo G, Wu D, Hao T, et al. Denitrifying sulfur conversion-associated EBPR: the effect of pH on anaerobic metabolism and performance. Water Res. 2017;123:687–695. doi: 10.1016/j.watres.2017.07.020
  • Xu Y, Hu H, Liu J, et al. pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation. Chem Eng J. 2015;267:260–265. doi: 10.1016/j.cej.2015.01.037
  • Li S, Wang C, Qin H, et al. Influence of phosphorus availability on the community structure and physiology of cultured biofilms. J Environ Sci China. 2016;42:19–31. doi: 10.1016/j.jes.2015.08.005
  • Ramalingam S, Chandra V. Influence of live microbes on suspended sediment concentration in coastal ecosystem. Mar Geol. 2018;405:108–113. doi: 10.1016/j.margeo.2018.08.007
  • Wang R, Peng Y, Cheng Z, et al. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system. Bioresour Technol. 2014;169:307–312. doi: 10.1016/j.biortech.2014.06.040
  • Seviour T, Donose BC, Pijuan M, et al. Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules. Environ Sci Technol. 2010;44:4729–4734. doi: 10.1021/es100362b
  • Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28:882–894. doi: 10.1016/j.biotechadv.2010.08.001
  • Clark LL, Ingall ED, Benner R. Marine phosphorus is selectively remineralized. Nature. 1998;393:426. doi: 10.1038/30881
  • Mudryk ZJ. Decomposition of organic and solubilisation of inorganic phosphorus compounds by bacteria isolated from a marine sandy beach. Mar Biol. 2004;145:1227–1234. doi: 10.1007/s00227-004-1397-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.