612
Views
15
CrossRef citations to date
0
Altmetric
Articles

Removal of Cr(VI) with nano-FeS and CMC-FeS and transport properties in porous media

, &
Pages 2935-2945 | Received 22 Jun 2018, Accepted 22 Feb 2019, Published online: 19 Mar 2019

References

  • Jonathan F. In situ treatment of chromium-contaminated groundwater. Environ Sci Technol. 2002;36:464–472. doi: 10.1021/es022466i
  • Joel B. Chromium chemistry and implications for environmental fate and toxicity. J Soil Contam. 1997;6:561–568. doi: 10.1080/15320389709383589
  • Bidyut S, Chris O. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordin Chem Rev. 2010;254:2959–2972. doi: 10.1016/j.ccr.2010.06.005
  • Richard MS, Jay B, Thomas AM, et al. Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water. J Environ Sci Heal C. 2006;24:155–182. doi: 10.1080/10590500600614337
  • Max C, Catherine K. Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol. 2006;36:155–163. doi: 10.1080/10408440500534032
  • Yan L, Xiji X, Junxiao L, et al. The hazard of chromium exposure to neonates in Guiyu of China. Sci Total Environ. 2008;403:99–104. doi: 10.1016/j.scitotenv.2008.05.033
  • Dong WQY, Cui Y, Liu X. Instance of soil and crop heavy metal contamination in China. Soil Sediment Contam. 2001;10:497–510. doi: 10.1080/20015891109392
  • Chunming S, Ralph D. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environ Sci Technol. 2005;39:6208–6216. doi: 10.1021/es050185f
  • Yinhui X, Dongye Z. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res. 2007;10:2101–2108.
  • Graham MC, John GF, Peter A, et al. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Sci Total Environ. 2015;364:32–44. doi: 10.1016/j.scitotenv.2005.11.007
  • Guha S, Bhargava P. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria. Water Environ Res. 2005;77:411–416. doi: 10.1002/j.1554-7531.2005.tb00300.x
  • Erdem M, Altundogan H, Ozer A, et al. Cr (VI) reduction in aqueous solutions by using synthetic iron sulphide. Environ Technol. 2001;22:1213–1222. doi: 10.1080/09593332208618206
  • Mostafa RA, Alyaa A, Belal MB, et al. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water. Int J Biol Macromol. 2019;126:402–413. doi: 10.1016/j.ijbiomac.2018.12.225
  • Mohamed D, Mostafa RA, Aftab APK, et al. Removal of Congo red, methylene blue and Cr(VI) ions from water using natural serpentine. Journal of the Taiwan Institute of Chemical Engineers. 2018;82:102–116. doi: 10.1016/j.jtice.2017.10.023
  • Martine M, Sophie B, Jean-Jacques E. Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloid Surface A. 2004;244:77–85. doi: 10.1016/j.colsurfa.2004.06.013
  • Zouboulis A, Kydros K, Matis KA. Removal of hexavalent chromium anions from solutions by pyrite fines. Water Res. 1995;29:1755–1760. doi: 10.1016/0043-1354(94)00319-3
  • Xiangyang S, Sun K, Balogh L, et al. Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology. 2006;17:4554–4560. doi: 10.1088/0957-4484/17/18/005
  • Ronald RP, Scott F. Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol. 1997;31:2039–2044. doi: 10.1021/es960836v
  • Sophie B, Martine M, Jean-Jacques E. XPS study of the reaction of chromium (VI) with mackinawite (FeS). Surf Interface Anal. 2002;34:293–297. doi: 10.1002/sia.1303
  • Jun W, Xian-Bin W, Raymond JZ. Reactivity enhancement of iron sulfide nanoparticles stabilized bysodium alginate: Taking Cr (VI) removal as an example. J Hazrad Mater. 2017;333:275–284. doi: 10.1016/j.jhazmat.2017.03.023
  • Yao-Tung L, Ching-Pao H. Reduction of chromium(VI) by pyrite in dilute aqueous solutions. Sep Purif Technol. 2008;63:191–199. doi: 10.1016/j.seppur.2008.05.001
  • Buerge I, Hug S. Kinetics and pH dependence of chromim(VI) reduction by iron(II). Environ Sci Technol. 1997;31:1426–1432. doi: 10.1021/es960672i
  • Anhuai L, Shaojun Z, Jie C, et al. Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite. Environ Sci Technol. 2008;40:3064–3069.
  • David R. The solubility of FeS. Geochim Cosmochim AC. 2006;70:5779–5789. doi: 10.1016/j.gca.2006.02.029
  • Cetin K, Cihan A, Selda K, et al. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: Batch, spectroscopic and column experiments. J Contam Hydrol. 2015;174:28–38. doi: 10.1016/j.jconhyd.2015.01.001
  • Xiangyang S, Kai S, Lajos PB, et al. Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology. 2006;17:4554–4560. doi: 10.1088/0957-4484/17/18/005
  • Xiao Z, Wen L, Zhengqing C, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 2016;100:245–266. doi: 10.1016/j.watres.2016.05.019
  • Cushing BL, Kolesnichenko V, O’Connor CJ. Recent Advances in the liquid-phase syntheses of Inorganic nanoparticles. Chem Rev. 2004;104:3893–3946. doi: 10.1021/cr030027b
  • Xianbiao W, Jin L, Donglin Z, et al. Preparation of CMC-stablized FeS nanoparticles and their enhanced performance for Cr(VI) removal. Adv Mat Res. 2011;287–290:96–99.
  • Yuanyuan L, Wenyan X, Jiajia W, et al. Optimized synthesis of FeS nanoparticles with a high Cr(VI) removal capability. J Nanomater. 2016;2016:1687–4110.
  • Feng H, Dongye Z. Manipulating the size and dispersibility of zero valent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol. 2007;41:6216–6221. doi: 10.1021/es0705543
  • Yanyan G, Yuanyuan L, Xiong Z, et al. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology. 2012;23:294007–294019. doi: 10.1088/0957-4484/23/29/294007
  • Feng H, Man Z, Tianwei Q, et al. Transport of carboxymethyl cellulose stabilizer iron nanoparticles in porous media: column experiments and modeling. J Colloid Interf Sci. 2009;334:96–102. doi: 10.1016/j.jcis.2009.02.058
  • Xiong Z, Feng H, Dongye Z. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res. 2009;43:5171–5179. doi: 10.1016/j.watres.2009.08.018
  • Lifeng D, Xing F, Xuemei S, et al. Direct preparation of semiconductor iron sulfide nanocrystals from natural pyrite. RSC Adv. 2013;14:4539–4543.
  • Yujie L, Wangyu W, Liqiang Z, et al. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Chemosphere. 2017;169:131–138. doi: 10.1016/j.chemosphere.2016.11.060
  • Juan C, Ri C, Mei H. Influence of pH on hexavalent chromium reduction by Fe(II) and sulfide compounds. Water Sci Technol. 2015;72:22–28. doi: 10.2166/wst.2015.179
  • Descostes M, Mercier F, Thromat N, et al. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl Surf Sci. 2000;165:288–302. doi: 10.1016/S0169-4332(00)00443-8
  • Tao W, Yuanyuan L, Jiajia W, et al. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. J Environ Manage. 2018;231:679–686.
  • Yanyan G, Longshuang G, Jingchun T, et al. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Sci Total Environ. 2017;595:743–751. doi: 10.1016/j.scitotenv.2017.03.282
  • Mystriotia C, Papassiopia N, Xenidis A, et al. Column study for the evaluation of the transport propertiesof polyphenol-coated nanoiron. J Hazard Mater. 2015;281:64–69. doi: 10.1016/j.jhazmat.2014.05.050
  • Francesca G, Tiziana T, Rajandrea S. Guar gum solutions for improved delivery of iron particles in porous media (Part 1): porous medium rheology and guar gum-induced clogging. J Contam Hydrol. 2014;166:23–33. doi: 10.1016/j.jconhyd.2014.06.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.