533
Views
29
CrossRef citations to date
0
Altmetric
Articles

Sol–gel synthesis of carbon-doped TiO2 nanoparticles based on microcrystalline cellulose for efficient photocatalytic degradation of methylene blue under visible light

&
Pages 3233-3247 | Received 08 Jan 2019, Accepted 01 Apr 2019, Published online: 01 May 2019

References

  • Liu WX, Jiang P, Shao WN, et al. A novel approach for the synthesis of visible-light-active nanocrystalline N-doped TiO2 photocatalytic hydrosol. Solid State Sci. 2014;33:45–48.
  • Kanakaraju D, Glass BD, Oelgemöller M. Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ. Chem. Lett. 2014;12(1):27–47.
  • Ji J, Xu Y, Huang H, et al. Mesoporous TiO2 under VUV irradiation: enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chem. Eng. J. 2017;327:490–499.
  • Stucchi M, Galli F, Bianchi CL, et al. Simultaneous photodegradation of VOC mixture by TiO2 powders. Chemosphere. 2018;193:198–206.
  • Ma J, Zhu C, Lu J, et al. Catalytic degradation of gaseous benzene by using TiO2/goethite immobilized on palygorskite: preparation, characterization and mechanism. Solid State Sci. 2015;49:1–9.
  • Ma Y, Han L, Ma H, et al. Improving the visible-light photocatalytic activity of interstitial carbon-doped TiO2 with electron-withdrawing bidentate carboxylate ligands. Catal. Commun. 2017;95:1–5.
  • Peng X, Wang M, Hu F, et al. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution. J. Alloys Compd. 2019;770:1055–1063.
  • Xu F, Wang T, Chen H, et al. Preparation of photocatalytic TiO2-based self-cleaning coatings for painted surface without interlayer. Prog. Org. Coatings. 2017;113:15–24.
  • Zhou J, Liu S, Qi J, et al. Structure and properties of composite films prepared from cellulose and nanocrystalline titanium dioxide particles. J. Appl. Polym. Sci. 2006;101(6):3600–3608.
  • Miranda-García N, Suárez S, Sánchez B, et al. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl. Catal. B Environ. 2011;103(3-4):294–301.
  • Zhang Z, Shi C, Xiao G, et al. All-solid-state quantum-dot-sensitized solar cells with compact PbS quantum-dot thin films and TiO2 nanorod arrays. Ceram. Int. 2017;43(13):10052–10056.
  • Sun H, Ruan P, Bao Z, et al. Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells. Solid State Sci. 2015;40:60–66.
  • Santhaveesuk T, Shimanoe K, Suematsu K, et al. Size-independent and ultrahigh CO gas sensor based on TiO2 modified ZnO tetrapods. Phys Status Solidi A. 2018;215:1700784.
  • Tian C. Internal influences of hydrolysis conditions on rutile TiO2 pigment production via short sulfate process. Mater. Res. Bull. 2018;103:83–88.
  • Shi J, Chen J, Feng Z, et al. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C. 2007;111(2):693–699.
  • Melián EP, Díaz OG, Rodríguez JMD, et al. Effect of hydrothermal treatment on structural and photocatalytic properties of TiO2 synthesized by sol–gel method. Appl. Catal. A Gen. 2012;411:153–159.
  • Rasoulnezhad H, Kavei G, Ahmadi K, et al. Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO2 thin film. Appl. Surf. Sci. 2017;408:1–10.
  • Zhang W, Pei X, Chen J, et al. Effects of Al doping on properties of xAl–3%In–TiO2 photocatalyst prepared by a sol–gel method. Mater. Sci. Semicond. Process. 2015;38:24–30.
  • Djokić VR, Marinković AD, Ersen O, et al. The dependence of the photocatalytic activity of TiO2/carbon nanotubes nanocomposites on the modification of the carbon nanotubes. Ceram. Int. 2014;40(3):4009–4018.
  • Zhao Y, Li Y, Wang CW, et al. Carbon-doped anatase TiO2 nanotube array/glass and its enhanced photocatalytic activity under solar light. Solid State Sci. 2013;15:53–59.
  • Bao N, Niu JJ, Li Y, et al. Low-temperature hydrothermal synthesis of N-doped TiO2 from small-molecule amine systems and their photocatalytic activity. Environ. Technol. 2013;34(21):2939–2949.
  • Shie JL, Lee CH, Chiou CS, et al. Photocatalytic characteristic and photodegradation kinetics of toluene using N-doped TiO2 modified by radio frequency plasma. Environ. Technol. 2014;35(5):653–660.
  • Boningari T, Inturi SNR, Suidan M, et al. Novel one-step synthesis of sulfur doped-TiO2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde. Chem. Eng. J. 2018;339:249–258.
  • Du M, Qiu B, Zhu Q, et al. Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity. Catal Today. 2018;327:340–346.
  • Dozzi MV, Selli E. Effects of the calcination temperature on the photoactivity of B- and F-doped or codoped TiO2 in formic acid degradation. Mater. Sci. Semicond. Process. 2016;42:36–39.
  • Sotelo-Vazquez C, Noor N, Kafizas A, et al. Multifunctional P-doped TiO2 films: a new approach to self-cleaning, transparent conducting oxide materials. Chem. Mater. 2015;27(9):3234–3242.
  • Barkul RP, Patil MK, Patil SM, et al. Sunlight-assisted photocatalytic degradation of textile effluent and Rhodamine B by using iodine doped TiO2 nanoparticles. J. Photochem. Photobiol. A Chem. 2017;349:138–147.
  • Shao J, Sheng W, Wang M, et al. In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl. Catal. B Environ. 2017;209:311–319.
  • Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 2008;35(5):377–391.
  • Yu Q, Wu P, Xu P, et al. Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide. Green Chem. 2008;10(10):1061–1067.
  • Tingaut P, Zimmermann T, Sèbe G. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J. Mater. Chem. 2012;22(38):20105–20111.
  • Goncalves G, Marques PAAP, Pinto RJB, et al. Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Compos. Sci. Technol. 2009;69(7-8):1051–1056.
  • Virkutyte J, Jegatheesan V, Varma RS. Visible light activated TiO2/microcrystalline cellulose nanocatalyst to destroy organic contaminants in water. Bioresour. Technol. 2012;113:288–293.
  • Liu X, Li Y, Yang J, et al. Enhanced photocatalytic activity of CdS-decorated TiO2/carbon core–shell microspheres derived from microcrystalline cellulose. Materials Basel. 2016;9(4):245–255.
  • Hamad H, Bailón-García E, Morales-Torres S, et al. Physicochemical properties of new cellulose-TiO2 composites for the removal of water pollutants: Developing specific interactions and performances by cellulose functionalization. J. Environ. Chem. Eng. 2018;6(4):5032–5041.
  • Golubović A, Šćepanović M, Kremenović A, et al. Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J. Sol–Gel Sci. Technol. 2009;49(3):311–319.
  • Kwon CH, Shin H, Kim JH, et al. Degradation of methylene blue via photocatalysis of titanium dioxide. Mater. Chem. Phys. 2004;86(1):78–82.
  • Ali T, Ahmed A, Alam U, et al. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 2018;212:325–335.
  • Mohamed MA, Wan Salleh WN, Jaafar J, et al. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: bio-template assisted sol-gel synthesis and photocatalytic activity. Appl. Surf. Sci. 2017;393:46–59.
  • Mohamed MA, Wan Salleh WN, Jaafar J, et al. Regenerated cellulose membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania. Carbohydr. Polym. 2016;146:166–173.
  • Chen X, Kuo DH, Lu D. N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light. Chem. Eng. J. 2016;295:192–200.
  • Zhao J, Gu Y, Huang J. Flame synthesis of hierarchical nanotubular rutile titania derived from natural cellulose substance. Chem. Commun. 2011;47(38):10551–10553.
  • Yang L, Li X, Wang Z, et al. Natural fiber templated TiO2 microtubes via a double soaking sol–gel route and their photocatalytic performance. Appl. Surf. Sci. 2017;420:346–354.
  • Neppolian B, Celik E, Anpo M, et al. Ultrasonic-assisted pH swing method for the synthesis of highly efficient TiO2 nano-size photocatalysts. Catal. Lett. 2008;125(3-4):183–191.
  • Balaganapathi T, Kaniamuthan B, Vinoth S, et al. PEG assisted synthesis of porous TiO2 using sol–gel processing and its characterization studies. Mater. Chem. Phys. 2017;189:50–55.
  • Liu S, Tao D, Bai H, et al. Cellulose-nanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J. Appl. Polym. Sci. 2012;126(S1):E282–E290.
  • Paunovic P, Grozdanov A, Cešnovar A, et al. Characterization of nanoscaled TiO2 produced by simplified sol–gel method using organometallic precursor. J. Eng. Mater. Technol. 2015;137(2):021003.
  • Samsudin EM, Abd Hamid SB. Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Appl. Surf. Sci. 2017;391:326–336.
  • Kondo Y, Yoshikawa H, Awaga K, et al. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir. 2008;24(2):547–550.
  • Marques PAAP, Trindade T, Neto CP. Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method. Compos. Sci. Technol. 2006;66(7-8):1038–1044.
  • Duta A, Visa M. Simultaneous removal of two industrial dyes by adsorption and photocatalysis on a fly-ash–TiO2 composite. J. Photochem. Photobiol. A Chem. 2015;306:21–30.
  • Wada M, Sugiyama J, Okano T. Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J. Appl. Polym. Sci. 1993;49(8):1491–1496.
  • Santamaría L, Vicente MA, Korili SA, et al. Effect of the preparation method and metal content on the synthesis of metal modified titanium oxide used for the removal of salicylic acid under UV light. Environ. Technol. 2018;12:1–12.
  • Nithya N, Bhoopathi G, Magesh G, et al. Neodymium doped TiO2 nanoparticles by sol–gel method for antibacterial and photocatalytic activity. Mater. Sci. Semicond. Process. 2018;83:70–82.
  • Mahmoudian MR, Basirun WJ, Alias Y, et al. Synthesis and characterization of polypyrrole/Sn-doped TiO2 nanocomposites (NCs) as a protective pigment. Appl. Surf. Sci. 2011;257(20):8317–8325.
  • Jagadale TC, Takale SP, Sonawane RS, et al. N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. J Phys Chem C. 2008;112(37):14595–14602.
  • Di Valentin C, Pacchioni G, Selloni A. Theory of carbon doping of titanium dioxide. Chem. Mater. 2005;17(26):6656–6665.
  • Lim GT, Kim KH, Park J, et al. Synthesis of carbon-doped photocatalytic TiO2 nano-powders by AFD process. J. Ind. Eng. Chem. 2010;16(5):723–727.
  • Wu X, Yin S, Dong Q, et al. Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl. Catal. B Environ. 2013;142:450–457.
  • Chen D, Jiang Z, Geng J, et al. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind. Eng. Chem. Res. 2007;46(9):2741–2746.
  • Park Y, Kim W, Park H, et al. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B Environ. 2009;91(1-2):355–361.
  • Yang J, Zhang X, Wang C, et al. Solar photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis. Solid State Sci. 2012;14(1):139–144.
  • Cong Y, Zhang J, Chen F, et al. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C. 2007;111(19):6976–6982.
  • Li JG, Ishigaki T, Sun X. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions:  phase-selective synthesis and physicochemical properties. J Phys Chem C. 2007;111(13):4969–4976.
  • Niu X, Yan W, Zhao H, et al. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity. Appl. Surf. Sci. 2018;440:804–813.
  • Ji L, Zhang Y, Miao S, et al. In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon N Y. 2017;125:544–550.
  • Umadevi M, Parimaladevi R, Sangari M. Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;120:365–369.
  • Xiao Q, Ouyang L. Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature. Chem Eng J 2009;148(2–3):248–253.
  • Guayaquil-Sosa JF, Serrano-Rosales B, Valadés-Pelayo PJ, et al. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Appl. Catal. B Environ. 2017;211:337–348.
  • Choudhury B, Choudhury A. Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles. Phys. E Low-Dimensional Syst. Nanostructures. 2014;56:364–371.
  • Anju KR, Thankapan R, Rajabathar JR, et al. Hydrothermal synthesis of nanosized (Fe, Co, Ni)-TiO2 for enhanced visible light photosensitive applications. Optik (Stuttg). 2018;165:408–415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.