326
Views
7
CrossRef citations to date
0
Altmetric
Articles

Isolation and characterization of Pb-resistant plant growth promoting endophytic bacteria and their role in Pb accumulation by fast-growing trees

, , , & ORCID Icon
Pages 3598-3606 | Received 19 Jul 2018, Accepted 01 May 2019, Published online: 20 May 2019

References

  • Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals-concepts and applications. Chemosphere. 2013;91(7):869–881. doi: 10.1016/j.chemosphere.2013.01.075
  • Fahr M, Laplaze L, Bendaou N, et al. Effect of lead on root growth. Front Plant Sci. [cited 2014 Aug 3]: [7 p.]. DOI:10.3389/fpls.2013.00175.
  • Wuana RA, Okieimen FE. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. [cited 2016 Dec 15]: [20 p.]. DOI:10.5402/2011/402647.
  • Zhi-xin N, Sun LN, Sun TH, et al. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci. 2007;19(8):961–967. doi: 10.1016/S1001-0742(07)60158-2
  • Pulford ID, Watson C. Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int. 2003;29(4):529–540. doi: 10.1016/S0160-4120(02)00152-6
  • Rajkumar M, Ma Y, Freitas H. Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. J Environ Manage. 2013;128:973–980. doi: 10.1016/j.jenvman.2013.07.001
  • Zhivotovsky OP, Kuzovkina JA, Schulthess CP, et al. Hydroponic screening of willows (Salix L.) for lead tolerance and accumulation. Int J Phytorem. 2011;13(1):75–94. doi: 10.1080/15226511003671361
  • Rostami S, Azhdarpoor A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere. 2019;220:818–827. doi: 10.1016/j.chemosphere.2018.12.203
  • Neugschwandtner RW, Tlustoš P, Komárek M, et al. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency. Geoderma. 2008;144(3–4):446–454. doi: 10.1016/j.geoderma.2007.11.021
  • Selamat SN, Abdullah SR, Idris M. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Int J Phytorem. 2014;16(7–8):694–703. doi: 10.1080/15226514.2013.856843
  • Meeinkuirt W, Pokethitiyook P, Kruatrachue M, et al. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Int J Phytorem. 2012;14:925–938. doi: 10.1080/15226514.2011.636403
  • Majid NM, Islam MM, Justin V, et al. Evaluation of heavy metal uptake and translocation by Acacia mangium as a phytoremediator of copper contaminated soil. Afr J Biotechnol. 2011;10(42):8373–8379. doi: 10.5897/AJB11.392
  • Zárubová P, Tlustoš P, Vondráčková S, et al. Restoration of contaminated sites with the aid of fast growing trees. Eur Chem Bull. 2012;1(9):391–396.
  • Favas PJC, Pratas J, Varun M, et al. Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Hernandez-Soriano MC, editor. Environmental risk assessment of soil contamination. IntechOpen. 2014. p. 485–517. [cited 2019 March 3]. DOI:10.5772/57469.
  • He H, Ye Z, Yang D, et al. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere. 2013;90(6):1960–1965. doi: 10.1016/j.chemosphere.2012.10.057
  • Shin MN, Shim J, You Y, et al. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater. 2012;199–200:314–320. doi: 10.1016/j.jhazmat.2011.11.010
  • Sheng XF, Xia JJ, Jiang CY, et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut. 2008;156(3):1164–1170. doi: 10.1016/j.envpol.2008.04.007
  • Navarro-Torre S, Mateos-Naranjo E, Caviedes MA, et al. Isolation of plant-growth promoting and metal resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Mar Pollut Bull. 2016;110(1):133–142. doi: 10.1016/j.marpolbul.2016.06.070
  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, et al. Plant growth promoting bacterial endophytes. Microbiol Res. 2016;183:92–99. doi: 10.1016/j.micres.2015.11.008
  • Ijaz A, Imran A, Anwar ul Haq M, et al. Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil. 2016;405:179–195. doi: 10.1007/s11104-015-2606-2
  • Yousaf S, Afzal M, Anees M, et al. Campisano A. Ecology and functional potential of endophytes in bioremediation: A molecular perspective. In: Verma V, Gange A, editor. Advances in endophytic research. New Delhi: Springer; 2014. p. 301–320.
  • Sessitsch A, Kuffner M, Kidd P, et al. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem. 2013;60:182–194. doi: 10.1016/j.soilbio.2013.01.012
  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, et al. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43(10):895–914. doi: 10.1139/m97-131
  • Yongpisanphop J, Babel S, Kruatrachue M, et al. Phytoremediation potential of plants growing on the Pb-contaminated soil at the Song Tho Pb mine, Thailand. Soil Sediment Contam: An Int J. 2017;26(4):426–437. doi: 10.1080/15320383.2017.1348336
  • Luo SL, Chen L, Chen JL, et al. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere. 2011;85(7):1130–1138. doi: 10.1016/j.chemosphere.2011.07.053
  • Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160(1):47–56. doi: 10.1016/0003-2697(87)90612-9
  • Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170(1):265–270. doi: 10.1111/j.1574-6968.1999.tb13383.x
  • Liang X, He CQ, Ni G, et al. Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere. 2014;24(3):322–329. doi: 10.1016/S1002-0160(14)60018-7
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054
  • Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120. doi: 10.1007/BF01731581
  • Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x
  • Bressan W, Borges MT. Delivery methods for introducing endophytic bacteria into maize. Biocontrol. 2004;49(3):315–322. doi: 10.1023/B:BICO.0000025372.51658.93
  • Lodewyckx C, Vangronsveld J, Porteous F, et al. Endophytic bacteria and their potential applications. Crit Rev Plant Sci. 2002;21:583–606. doi: 10.1080/0735-260291044377
  • Zhang YF, He LY, Chen ZJ, et al. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater. 2011;186(2–3):1720–1725. doi: 10.1016/j.jhazmat.2010.12.069
  • Ma Y, Rajkumar M, Luo Y, et al. Inoculation of endophytic bacteria on host and non-host plants effects on plant growth and Ni uptake. J Hazard Mater. 2011;195:230–237. doi: 10.1016/j.jhazmat.2011.08.034
  • Rehman K, Imran A, Amin I, et al. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater. 2018;349:242–251. doi: 10.1016/j.jhazmat.2018.02.013
  • Rehman K, Imran A, Amin I, et al. Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere. 2019;217:576–583. doi: 10.1016/j.chemosphere.2018.11.041
  • Chen L, Luo S, Xiao X, et al. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol. 2010;46(3):383–389. doi: 10.1016/j.apsoil.2010.10.003
  • Ma Y, Rajkumar M, Zhang C, et al. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage. 2016;174:14–25. doi: 10.1016/j.jenvman.2016.02.047
  • Rajkumar M, Ae N, Prasad MN, et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010;28(3):142–149. doi: 10.1016/j.tibtech.2009.12.002
  • Jeong S, Moon HS, Nama K, et al. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil. Chemosphere. 2012;88(2):204–210. doi: 10.1016/j.chemosphere.2012.03.013
  • Li HY, Wei DQ, Shen M, et al. Endophytes and their role in phytoremediation. Fungal Divers. 2012;54(1):11–18. doi: 10.1007/s13225-012-0165-x
  • Chen WM, Tang YQ, Mori K, et al. Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol. 2012;15(2):99–110. doi: 10.3354/ab00422
  • Cherian S, Weyens N, Lindberg S, et al. Phytoremediation of trace element–contaminated environments and the potential of endophytic bacteria for improving this process. Crit Rev Environ Sci Technol. 2012;42(21):2215–2260. doi: 10.1080/10643389.2011.574106
  • Ullah A, Heng S, Munis MFH, et al. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ Exp Bot. 2015;117:28–40. doi: 10.1016/j.envexpbot.2015.05.001
  • Long XX, Chen XM, Chen YG, et al. Isolation and characterization of endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol. 2011;27(5):1197–1207. doi: 10.1007/s11274-010-0568-3
  • Khan MU, Sessitsch A, Harris M, et al. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci. [cited 2015 Jan 6]: [10 p.]. DOI:10.3389/fpls.2014.00755.
  • Xu C, Chen X, Duan D, et al. Effect of heavy metal resistant bacteria on enhanced metal uptake and translocation of the Cu-tolerant plant, Elsholtzia splendens. Environ Sci Pollut Res Int. 2015;22(7):5070–5081. doi: 10.1007/s11356-014-3931-3
  • Madhaiyan M, Poonguzhali S, Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere. 2007;69(2):220–228. doi: 10.1016/j.chemosphere.2007.04.017
  • Babu AG, Shea PJ, Sudhakar D, et al. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manage. 2015;151:160–166. doi: 10.1016/j.jenvman.2014.12.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.