142
Views
1
CrossRef citations to date
0
Altmetric
Articles

Unexpected activity of magnetically separable Fenton catalyst in clay slurries

ORCID Icon, , &
Pages 43-57 | Received 31 Dec 2018, Accepted 13 May 2019, Published online: 29 May 2019

References

  • Hespanhol I. Water pollution. In: Helmer R, Stellman JM, editors. Encyclopaedia of occupational health and safety. Vol. 2. Geneva: International Labour Organization publications; 1998. p. 53.16–53.19.
  • Schwarzenbach RP, Escher BI, Fenner K, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313:1072–1077. doi: 10.1126/science.1127291
  • Moss B. Water pollution by agriculture. Philos Trans R Soc B Biol Sci. 2008;363:659–666. doi: 10.1098/rstb.2007.2176
  • Earman S, Dettinger M. Potential impacts of climate change on groundwater resources – a global review. J Water Clim Chang. 2011;2:213–229. doi: 10.2166/wcc.2011.034
  • Parsons SA, Jefferson B. Introduction to potable water treatment processes. Oxford: Blackwell Publishing Ltd.; 2009.
  • Riffat R. Fundamentals of wastewater treatment and engineering. London: CRC Press; 2012.
  • Lin SH. Adsorption of disperse dye by various adsorbents. J Chem Technol Biotechnol. 1993;58:159–163. doi: 10.1002/jctb.280580209
  • Baup S, Wolbert D, Laplanche A. Importance of surface diffusivities in pesticide adsorption kinetics onto granular versus powdered activated carbon: experimental determination and modeling. Environ Technol. 2002;23:1107–1117. doi: 10.1080/09593332308618339
  • Tisa F, Abdul Raman AA, Wan Daud WMA. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review. J Environ Manage. 2014;146:260–275. doi: 10.1016/j.jenvman.2014.07.032
  • Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol. 2001;60:193–207. doi: 10.1016/S0013-7952(00)00101-0
  • Egazar’yants SV, Vinokurov VA, Vutolkina AV, et al. Oil sludge treatment processes. Chem Technol Fuels Oils. 2015;51:506–515. doi: 10.1007/s10553-015-0632-7
  • Ghosh U, Luthy RG, Cornelissen G, et al. In-situ sorbent amendments: a new direction in contaminated sediment management. Environ Sci Technol. 2011;45:1163–1168. doi: 10.1021/es102694h
  • Langguth F. Handbuch der Elektrochemie Elektromagnetische Aufbereitung. Vol. 33. 1902.
  • Korda D. La séparation électromagnétique et électrostatique des minerais. 1905.
  • Moffat G, Williams RA, Webb C, et al. Selective separations in environmental and industrial processes using magnetic carrier technology. Miner Eng. 1994;7:1039–1056. doi: 10.1016/0892-6875(94)90032-9
  • Oberteuffer J. Magnetic separation: a review of principles, devices, and applications. IEEE Trans Magn. 1974;10:223–238. doi: 10.1109/TMAG.1974.1058315
  • Dixon DR, Lydiate J. Selective magnetic adsorbents. J Macromol Sci Part A – Chem. 1980;14:153–159. doi: 10.1080/00222338008066628
  • Miltenyi S, Müller W, Weichel W, et al. High gradient magnetic cell separation with MACS. Cytometry. 1990;11:231–238. doi: 10.1002/cyto.990110203
  • Gänshirt D, Börjesson-Stoll R, Burschyk M, et al. Successful prenatal diagnosis from maternal blood with magnetic-activated cell sorting. Ann N Y Acad Sci. 1994;731:103–114. doi: 10.1111/j.1749-6632.1994.tb55753.x
  • Schmitz B, Radbruch A, Kümmel T, et al. Magnetic activated cell sorting (MACS) – a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. Eur J Haematol. 1994;52:267–275. doi: 10.1111/j.1600-0609.1994.tb00095.x
  • Ambashta RD, Sillanpää M. Water purification using magnetic assistance: a review. J Hazard Mater. 2010;180:38–49. doi: 10.1016/j.jhazmat.2010.04.105
  • De Latour C, Kolm H. Magnetic separation in water pollution control – II. IEEE Trans Magn. 1975;11:1570–1572. doi: 10.1109/TMAG.1975.1058801
  • Bolto BA. Magnetic particle technology for wastewater treatment. Waste Manag. 1990;10:11–21. doi: 10.1016/0956-053X(90)90065-S
  • Nishijima S, Izumi Y, Takeda SI, et al. Recycling of abrasives from wasted slurry by superconducting magnetic separation. IEEE Trans Appl Supercond. 2003;13:1596–1599. doi: 10.1109/TASC.2003.812800
  • Ma Y, Gu N, Gao J, et al. Remediation of anthracene-contaminated soil by ClO2 in the presence of magnetic Fe3O4-CuO@montmorillonite as catalyst. Water Air Soil Pollut. 2016;227:303. doi: 10.1007/s11270-016-3008-7
  • Ferroudj N, Nzimoto J, Davidson A, et al. Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Appl Catal B Environ. 2013;136–137:9–18. doi: 10.1016/j.apcatb.2013.01.046
  • Ferroudj N, Talbot D, Michel A, et al. Increasing the efficiency of magnetic heterogeneous Fenton catalysts with a simple halogen visible lamp. J Photochem Photobiol A Chem. 2017;338:85–95. doi: 10.1016/j.jphotochem.2017.01.029
  • Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B Environ. 2010;99:1–26. doi: 10.1016/j.apcatb.2010.07.006
  • Garrido-Ramírez EG, Theng BKG, Mora ML. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — a review. Appl Clay Sci. 2010;47:182–192. doi: 10.1016/j.clay.2009.11.044
  • Li ZM, Shea PJ, Comfort SD. Fenton oxidation of 2,4,6-trinitrotoluene in contaminated soil slurries. Environ Eng Sci. 1997;14:55–66. doi: 10.1089/ees.1997.14.55
  • Chen N, Fang G, Zhou D, et al. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions. Chemosphere. 2016;165:52–58. doi: 10.1016/j.chemosphere.2016.09.016
  • Sun SP, Zeng X, Lemley AT. Nano-magnetite catalyzed heterogeneous Fenton-like degradation of emerging contaminants carbamazepine and ibuprofen in aqueous suspensions and montmorillonite clay slurries at neutral pH. J Mol Catal A Chem. 2013;371:94–103. doi: 10.1016/j.molcata.2013.01.027
  • Ye P, Lemley AT. Adsorption effect on the degradation of carbaryl, mecoprop, and paraquat by anodic Fenton treatment in an SWy-2 montmorillonite clay slurry. J Agric Food Chem. 2008;43:1303–1312.
  • Ye P, Lemley AT. Adsorption effect on the degradation of 4,6-o-dinitrocresol and p-nitrophenol in a montmorillonite clay slurry by AFT. Water Res. 2009;43:1303–1312. doi: 10.1016/j.watres.2008.12.046
  • Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn. 1981;17:1247–1248. doi: 10.1109/TMAG.1981.1061188
  • Tourinho FA, Franck R, Massart R. Aqueous ferrofluids based on manganese and cobalt ferrites. J Mater Sci. 1990;25:3249–3254. doi: 10.1007/BF00587682
  • Andersson N, Corkery RW, Alberius PCA. One-pot synthesis of well ordered mesoporous magnetic carriers. J Mater Chem. 2007;17:2700. doi: 10.1039/b618502a
  • Landman J, Paineau E, Davidson P, et al. Effects of added silica nanoparticles on the Nematic liquid crystal phase formation in beidellite suspensions. J Phys Chem B. 2014;118:4913–4919. doi: 10.1021/jp500036v
  • Gulkaya I, Surucu GA, Dilek FB. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. J Hazard Mater. 2006;136:763–769. doi: 10.1016/j.jhazmat.2006.01.006
  • Decarreau A. Matériaux argileux : Structure, propriétés et applications. Société française de Minéralogie et de Cristallographie et Groupe Français des Argiles; 1989.
  • Badraoui M, Bloom PR. Iron-Rich high-charge beidellite in vertisols and mollisols of the high Chaouia Region of Morocco. Soil Sci Soc Am J. 1990;54:267. doi: 10.2136/sssaj1990.03615995005400010043x
  • Kwon BG, Kim E, Lee JH. Pentachlorophenol decomposition by electron beam process enhanced in the presence of Fe(III)-EDTA. Chemosphere. 2009;74:1335–1339. doi: 10.1016/j.chemosphere.2008.11.049
  • Bielski BHJ, Cabelli DE, Arudi RL, et al. Reactivity of HO2/O2- radicals in aqueous solution. J Phys Chem Ref Data. 1985;14:1041–1100. doi: 10.1063/1.555739
  • Xue X, Hanna K, Despas C, et al. Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH. J Mol Catal A Chem. 2009;311:29–35. doi: 10.1016/j.molcata.2009.06.016
  • Wu F, Li J, Peng Z, et al. Photochemical formation of hydroxyl radicals catalyzed by montmorillonite. Chemosphere. 2008;72:407–413. doi: 10.1016/j.chemosphere.2008.02.034
  • Gournis D, Karakassides MA, Petridis D. Formation of hydroxyl radicals catalyzed by clay surfaces. Phys Chem Miner. 2002;29:155–158. doi: 10.1007/s002690100215
  • Thompson TD, Moll WF. Oxidative power of smectites measured by hydroquinone. Clays Clay Miner. 1973;21:337–350. doi: 10.1346/CCMN.1973.0210510
  • Khoobiar S, Carter JL, Lucchesi PJ. The electronic properties of aluminum oxide and the chemisorption of water, hydrogen, and oxygen. J Phys Chem. 1968;72:1682–1688. doi: 10.1021/j100851a051
  • Kearns DR. Physical and chemical properties of singlet molecular oxygen. ChemRev. 1971;71:395–427.
  • Aubry JM. Search for singlet oxygen in the decomposition of hydrogen peroxide by mineral compounds in aqueous solutions. J Am Chem Soc. 1985;107:5844–5849. doi: 10.1021/ja00307a002
  • Odum JR, McDow SR, Kamens RM. Mechanistic and kinetic-studies of the photodegradation of Benz a Anthracene in the presence of Methoxyphenols. Environ Sci Technol. 1994;28:1285–1290. doi: 10.1021/es00056a016
  • Cory RM, McNeill K, Cotner JB, et al. Singlet oxygen in the coupled photo- and biochemical oxidation of dissolved organic matter. Environ Sci Technol. 2010;44:3683–3689. doi: 10.1021/es902989y
  • Kim H, Kim W, MacKeyev Y, et al. Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: Tin porphyrin versus C60 aminofullerene systems. Environ Sci Technol. 2012;46:9606–9613. doi: 10.1021/es301775k
  • Teel AL, Watts RJ. Degradation of carbon tetrachloride by modified Fenton’s reagent. J Hazard Mater. 2002;94:179–189. doi: 10.1016/S0304-3894(02)00068-7
  • Kong L, Ferry JL. Effect of salinity on the photolysis of chrysene adsorbed to a Smectite clay 2003.
  • Sackett DD, Fox MA. Adsorption of alkyl-substituted phenols onto montmorillonite: investigation of adsorbed intermediates via visible absorption spectroscopy and product analysis. Langmuir. 1990;6:1237–1245. doi: 10.1021/la00097a008
  • Huluka G. Systems, buffer solutions, and methods for predicting acidic amendment requirements in soils, 2015.
  • Bautista P, Mohedano AF, Casas JA, et al. An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol. 2008;83:1323–1338. doi: 10.1002/jctb.1988
  • Bonnoit C. Écoulement de suspensions granulaires modèles. 2010.
  • Cohen M, Ferroudj N, Combes A, et al. Tracking the degradation pathway of three model aqueous pollutants in a heterogeneous Fenton process. J Environ Chem Eng. 2019;7:102987. doi: 10.1016/j.jece.2019.102987

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.