346
Views
2
CrossRef citations to date
0
Altmetric
Articles

Photoreductive degradation of CCl4 by UV-Na2SO3: influence of various factors, mechanism and application

ORCID Icon, , , , &
Pages 217-226 | Received 15 Jan 2019, Accepted 25 May 2019, Published online: 09 Jun 2019

References

  • Ma Y, Dong BB, He XS, et al. Quicklime-induced changes of soil properties: implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration. Chemosphere. 2017;173:435–443. doi: 10.1016/j.chemosphere.2017.01.067
  • Jiang WC, Tang P, Lu SG, et al. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/Fe(II)/formic acid system in aqueous solution. Front Environ Sci Eng. 2018;12(2):61–70.
  • Xu J, Pu Y, Yang XJ, et al. Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles. Environ Technol. 2018;39(22):2882–2890. doi: 10.1080/09593330.2017.1369577
  • Ndong LBB, Gu XG, Lu SG, et al. Role of reactive oxygen species in the dechlorination of trichloroethene and 1.1.1-trichloroethane in aqueous phase in UV/TiO2 systems. Chem Eng Sci. 2015;123:367–375. doi: 10.1016/j.ces.2014.11.034
  • Ferguson JF, Pietari JMH. Anaerobic transformations and bioremediation of chlorinated solvents. Environ Pollut. 2000;107(2):209–215. doi: 10.1016/S0269-7491(99)00139-6
  • Minami W, Kim HJ. The decomposition property of trichloroethylene and ethylene using ultra-violet and TiO2 catalyst. Environ Technol. 2006;27(5):477–482. doi: 10.1080/09593332808618670
  • Min JE, Lee T, Choi J, et al. Black shale as a sorbent for tr-ichloroethylene and Cr(VI). Environ Technol. 2005;26(6):643–652. doi: 10.1080/09593330.2001.9619504
  • Ruan XX, Gu XG, Lu SG, et al. Trichloroethylene degradation by persulphate with magnetite as a heterogeneous activator in aqueous solution. Environ Technol. 2015;36(11):1389–1397. doi: 10.1080/09593330.2014.991353
  • Gu XG, Lu SG, Fu XR, et al. Carbon dioxide radical anion-based UV/S2O82-/HCOOH reductive process for carbon tetrachloride degradation in aqueous solution. Sep Purif Technol. 2017;172:211–216. doi: 10.1016/j.seppur.2016.08.019
  • Chen HM, Wu MT. Residential exposure to chlorinated hydrocarbons from groundwater contamination and the impairment of renal function-An ecological study. Sci Rep. 2017;7:40283.
  • Rhee E, Speece RE. Probing of maximal biodegradation rates of methylene chloride, carbon tetrachloride, and 1,1,1-trichloroethane in methanogenic processes. Environ Technol. 2000;21(2):147–156. doi: 10.1080/09593330.2000.9618895
  • Yan JC, Gao WG, Dong MG, et al. Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle. Chem Eng J. 2016;295:309–316. doi: 10.1016/j.cej.2016.01.085
  • Chen YM, Lin TF, Huang C, et al. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere. 2008;72(11):1671–1680. doi: 10.1016/j.chemosphere.2008.05.035
  • Suttinun O, Muller R, Luepromchai E. Trichloroethylene come-tabolic degradation by Rhodococcus sp L4 induced with plant essential oils. Biodegradation. 2009;20(2):281–291. doi: 10.1007/s10532-008-9220-4
  • Ciavarelli R, Cappelletti M, Fedi S, et al. Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherovorans BCP1 in continuous-flow biofilm reactors. Bioprocess Biosyst Eng. 2012;35(5):667–681. doi: 10.1007/s00449-011-0647-3
  • Ahmad M, Lee SS, Rajapaksha AU, et al. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour Technol. 2013;143:615–622. doi: 10.1016/j.biortech.2013.06.033
  • Tian FM, Zhang XH, Chen YL. Amino-functionalized metal-organic framework for adsorption and separation of dichloromethane and trichloromethane. RSC Adv. 2016;6(68):63895–63904. doi: 10.1039/C6RA07637H
  • Erto A, Andreozzi R, Lancia A, et al. Factors affecting the adsorption of trichloroethylene onto activated carbons. Appl Surf Sci. 2010;256(17):5237–5242. doi: 10.1016/j.apsusc.2009.12.110
  • Huang KC, Hoag GE, Chheda P, et al. Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. J Hazard Mater. 2001;87(1-3):155–169. doi: 10.1016/S0304-3894(01)00241-2
  • Sunder M, Hempel DC. Oxidation of tri- and perchloroethene in aqueous solution with ozone and hydrogen peroxide in a tube reactor. Water Res. 1997;31(1):33–40. doi: 10.1016/S0043-1354(96)00218-7
  • Mao XH, Ciblak A, Baek K, et al. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes. Water Res. 2012;46(6):1847–1857. doi: 10.1016/j.watres.2012.01.002
  • Tang WZ, Huang CP. Stochiometry of Fenton's reagent in the oxidation of chlorinated aliphatic organic pollutants. Environ Technol. 1997;18(1):13–23. doi: 10.1080/09593330.1997.9618467
  • Chen FX, Xie SL, Huang XL, et al. Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. J Hazard Mater. 2017;322:152–162. doi: 10.1016/j.jhazmat.2016.02.073
  • Liang CJ, Wang ZS, Bruell CJ. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere. 2007;66(1):106–113. doi: 10.1016/j.chemosphere.2006.05.026
  • Jung JG, Do SH, Kwon YJ, et al. Degradation of multi-DNAPLs by a UV/persulphate/ethanol system with the additional injection of a base solution. Environ Technol. 2015;36(8):1044–1049. doi: 10.1080/09593330.2014.974678
  • Teel AL, Watts RJ. Degradation of carbon tetrachloride by modified Fenton's reagent. J Hazard Mater. 2002;94(2):179–189. doi: 10.1016/S0304-3894(02)00068-7
  • Watts RJ, Bottenberg BC, Hess TF, et al. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton's reactions. Environ Sci Technol. 1999;33(19):3432–3437. doi: 10.1021/es990054c
  • Huston PL, Pignatello JJ. Reduction of perchloroalkanes by ferrioxalate-generated carboxylate radical preceding mineralization by the photo-fenton reaction. Environ Sci Technol. 1996;30(12):3457–3463. doi: 10.1021/es960091t
  • Liou YH, Lo SL, Lin CJ. Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation. Water Res. 2007;41(8):1705–1712. doi: 10.1016/j.watres.2007.01.014
  • Gonzalez MC, Le Roux GC, Rosso JA, et al. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere. 2007;69(8):1238–1244. doi: 10.1016/j.chemosphere.2007.05.076
  • Tang P, Jiang W, Lu S, et al. Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environ Technol. 2019;40(3):356–364. doi: 10.1080/09593330.2017.1393012
  • Xu MH, Gu XG, Lu SG, et al. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system. J Hazard Mater. 2015;286:7–14. doi: 10.1016/j.jhazmat.2014.12.031
  • Siefermann KR, Abel B. The hydrated electron: a seemingly familiar chemical and biological transient. Angew Chem, Int Ed. 2011;50(23):5264–5272. doi: 10.1002/anie.201006521
  • Gu YR, Dong WY, Luo C, et al. Efficient reductive decomposition of perfluorooctanesulfonate in a high Photon flux UV/sulfite system. Environ Sci Technol. 2016;50(19):10554–10561. doi: 10.1021/acs.est.6b03261
  • Xiao Q, Wang T, Yu SL, et al. Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications. Water Res. 2017;111:288–296. doi: 10.1016/j.watres.2017.01.018
  • Qu Y, Zhang CJ, Li F, et al. Photo-reductive defluorination of perfluorooctanoic acid in water. Water Res. 2010;44(9):2939–2947. doi: 10.1016/j.watres.2010.02.019
  • Liu X, Vellanki BP, Batchelor B, et al. Degradation of 1,2-dichloroethane with advanced reduction processes (ARPs): effects of process variables and mechanisms. Chem Eng J. 2014;237:300–307. doi: 10.1016/j.cej.2013.10.037
  • Zhang ZJ, Wang XN, Xue YC, et al. Enhanced dechlorination of triclosan by hydrated electron reduction in aqueous solution. Chem Eng J. 2015;263:186–193. doi: 10.1016/j.cej.2014.11.048
  • Huang L, Dong WB, Hou HQ. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chem Phys Lett. 2007;436(1-3):124–128. doi: 10.1016/j.cplett.2007.01.037
  • Liu X, Yoon S, Batchelor B, et al. Degradation of vinyl chloride (VC) by the sulfite/UV advanced reduction process (ARP): effects of process variables and a kinetic model. Sci Total Environ. 2013;454-455:578–583. doi: 10.1016/j.scitotenv.2013.03.060
  • Song Z, Tang HQ, Wang N, et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system. J Hazard Mater. 2013;262:332–338. doi: 10.1016/j.jhazmat.2013.08.059
  • Luo YR. Handbook of bond dissociation energies in organic compounds. Boca Raton (FL): CRC Press; 2003.
  • Li XC, Ma J, Liu GF, et al. Efficient reductive dechlorination of monochloroacetic acid by Sulfite/UV process. Environ Sci Technol. 2012;46(13):7342–7349. doi: 10.1021/es3008535
  • Vellanki BP, Batchelor B. Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process. J Hazard Mater. 2013;262:348–356. doi: 10.1016/j.jhazmat.2013.08.061
  • Botlaguduru VSV, Batchelor B, Abdel-Wahab A. Application of UV-sulfite advanced reduction process to bromate removal. J Water Process Eng. 2015;5:76–82. doi: 10.1016/j.jwpe.2015.01.001
  • Liu XW, Zhang TQ, Wang LL, et al. Hydrated electron-based degradation of atenolol in aqueous solution. Chem Eng J. 2015;260:740–748. doi: 10.1016/j.cej.2014.08.109
  • Gu YR, Liu TZ, Wang HJ, et al. Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system. Sci Total Environ. 2017;607:541–548. doi: 10.1016/j.scitotenv.2017.06.197
  • Smith BA, Teel AL, Watts RJ. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems. Environ Sci Technol. 2004;38(20):5465–5469. doi: 10.1021/es0352754
  • Jung B, Farzaneh H, Khodary A, et al. Photochemical degradation of trichloroethylene by sulfite-mediated UV irradiation. J Environ Chem Eng. 2015;3(3):2194–2202. doi: 10.1016/j.jece.2015.07.026
  • Choi WY, Hoffmann MR. Photoreductive mechanism of CCl4 degradation on TiO2 Particles and effects of electron-Donors. Environ Sci Technol. 1995;29(6):1646–1654. doi: 10.1021/es00006a031
  • Wang W, Zafiriou OC, Chan IY, et al. Production of hydrated electrons from photoionization of dissolved organic matter in natural waters. Environ Sci Technol. 2007;41(5):1601–1607. doi: 10.1021/es061069v
  • Guan YH, Ma J, Liu DK, et al. Insight into chloride effect on the UV/peroxymonosulfate process. Chem Eng J. 2018;352:477–489. doi: 10.1016/j.cej.2018.07.027
  • Mertens R, Vonsonntag C. Photolysis (Lambda = 254 Nm) of Tetrachloroethene in aqueous-Solutions. J Photoch Photobio A. 1995;85(1-2):1–9. doi: 10.1016/1010-6030(94)03903-8
  • Wang XY, Chen C, Chang Y, et al. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. J Hazard Mater. 2009;161(2-3):815–823. doi: 10.1016/j.jhazmat.2008.04.027
  • Feng J, Lim TT. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere. 2005;59(9):1267–1277. doi: 10.1016/j.chemosphere.2004.11.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.