251
Views
1
CrossRef citations to date
0
Altmetric
Articles

Influence of parameters on the photocatalytic bromate removal by F-graphene-TiO2

, , &
Pages 248-256 | Received 22 Apr 2019, Accepted 25 May 2019, Published online: 13 Jun 2019

References

  • Xie L, Shang C. A review on bromate occurrence and removal strategies in water supply. Water Sci Technol Water Supply. 2006;6(6):131–136. doi: 10.2166/ws.2006.960
  • Xu C, Wang X, Shi X, et al. Bromate removal from aqueous solutions by ordered mesoporous carbon. Environ Technol. 2014;35(8):984–992. doi: 10.1080/09593330.2013.857725
  • Zeino A, Abukibash A, Khaled M, et al. Bromate removal from water using doped iron nanoparticles on multiwalled carbon nanotubes (CNTS). J Nanomater. 2014;2014:1–9. doi: 10.1155/2014/561920
  • Hong S, Deng S, Yao X, et al. Bromate removal from water by polypyrrole tailored activated carbon. J Colloid Interface Sci. 2016;467:10–16. doi: 10.1016/j.jcis.2016.01.001
  • Chubar NI, Samanidou VF, Kouts VS, et al. Adsorption of fluoride, chloride, bromide, and bromate ions on a novel ion exchanger. J Colloid Interface Sci. 2005;291(1):67–74. doi: 10.1016/j.jcis.2005.04.086
  • Wiśniewski JA, Kabsch-Korbutowicz M, Łakomska S. Ion-exchange membrane processes for Br- and BrO3- ion removal from water and for recovery of salt from waste solution. Desalination. 2014;342(5):175–182. doi: 10.1016/j.desal.2013.07.007
  • Ji H, Wu W, Li F, et al. Enhanced adsorption of bromate from aqueous solutions on ordered mesoporous Mg-Al layered double hydroxides (LDHs). J Hazard Mater. 2017;334:212–222. doi: 10.1016/j.jhazmat.2017.04.014
  • Zhang H, Deng R, Wang H, et al. Reduction of bromate from water by zero-valent iron immobilized on functional polypropylene fiber. Chem Eng J. 2016;292:190–198. doi: 10.1016/j.cej.2016.02.010
  • Tang S, Wang X, Liu S, et al. Mechanism and kinetics of halogenated compound removal by metallic iron: Transport in solution, diffusion and reduction within corrosion films. Chemosphere. 2017;178:009–128. doi: 10.1016/j.chemosphere.2017.03.006
  • Zhang Y, Liu H, Liu R. Appropriate conditions of oxidation by-product bromate removal from drinking water by nanoparticle zero-valent iron. J Environ Eng. 2014;140(9):525–531. doi: 10.1061/(ASCE)EE.1943-7870.0000764
  • Huan Y, Huang D, Qin L, et al. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl Catal B. 2018;239:408–424. doi: 10.1016/j.apcatb.2018.07.068
  • Huan Y, Qin L, Huang D, et al. Nano-structured bismuth tungstate with controlled morphology: Fabrication, modification, environmental application and mechanism insight. Chem Eng J. 2019;358:480–496. doi: 10.1016/j.cej.2018.10.036
  • Yang Y, Zhang C, Huang D, et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl Catal B. 2019;245:87–99. doi: 10.1016/j.apcatb.2018.12.049
  • Huan Y, Yan M, Huang D, et al. Synergistic effect of artificial enzyme and 2D nano-structured Bi2WO6 for eco-friendly and efficient biomimetic photocatalysis. Appl Catal B. 2019;250:52–62. doi: 10.1016/j.apcatb.2019.03.008
  • Nerger BA, Peiris RH, Moresoli C. Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment. Chemosphere. 2015;136:140–144. doi: 10.1016/j.chemosphere.2015.03.089
  • Noguchi H, Nakajima A, Watanabe T, et al. Design of a photocatalysts for bromate decomposition: surface modification of TiO2 by pseudo-boehmite. Environ Sci Technol. 2003;37(1):153–157. doi: 10.1021/es0258733
  • Gutierrez-Mata AG, Velazquez-Martínez S, Álvarez-Gallegos A, et al. Recent overview of solar photocatalysis and solar photo-Fenton processes for wastewater treatment. Int J Photoenergy. 2017;2017:1–27. doi: 10.1155/2017/8528063
  • Wang Y, Wang Q, Zhan X, et al. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale. 2013;5:8326–8339. doi: 10.1039/c3nr01577g
  • Mills A, Belghazi A, Rodman D. Bromate removal from drinking water by semiconductor photocatalysis. Water Res. 1996;30(30):1973–1978. doi: 10.1016/0043-1354(96)00012-7
  • Huang X, Wang L, Zhou J, et al. Photocatalytic decomposition of bromate ion by the UV/P25-graphene processes. Water Res. 2014;57(15):1–7. doi: 10.1016/j.watres.2014.02.042
  • Gai Y, Li S, Xia J, et al. Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett. 2009;102(3):036402–036402. doi: 10.1103/PhysRevLett.102.036402
  • Zhang Y, Li L, Liu H. Photocatalytic reduction activity of {001} TiO2 codoped with F and Fe under visible light for bromate removal. J Nanomater. 2016;2016:1–7.
  • Cai C, Wang J, Cao F, et al. Synthesis and photocatalytic activity of F/TiO2 nanocrystals with exposed (001) facets via a nonhydrolytic solvothermal route. Chin J Catal. 2011;32(5):862–871. doi: 10.1016/S1872-2067(10)60206-9
  • Chambers SA, Droubay TC, Capan C, et al. Unintentional F doping of the surface of SrTiO3(001) etched in HF acid – structure and electronic properties. Physics (College Park Md). 2011;606(3–4):554–558.
  • Zhang Y, Li L, Liu H. Graphene oxide and F co-doped TiO2 with (001) facets for the photocatalytic reduction of bromate: synthesis, characterization and reactivity. Chem Eng J. 2016;307:860–867. doi: 10.1016/j.cej.2016.08.139
  • Akpan UG, Hamed BH. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater. 2009;170:520–529. doi: 10.1016/j.jhazmat.2009.05.039
  • Pinkernell U, Von GU. Bromate minimization during ozonation: mechanistic considerations. Environ Sci Technol. 2001;35(12):2525–2531. doi: 10.1021/es001502f
  • Danielle D, Humberto J, Regina D. Kinetics of photocatalytic reduction of nitrate in synthetic and real effluent using TiO2 doped with Zn as photocatlysts. J Chem Technol Biotechnol. 2015;90:821–829. doi: 10.1002/jctb.4375
  • Ahmadi M, Ghanbari F. Degradation of organic pollutants by photoelectro-peroxone/ZVI process: synergistic, kinetic and feasibility studies. J Environ Manage. 2018;228:32–39. doi: 10.1016/j.jenvman.2018.08.102
  • Long M, Brame J, Qin F, et al. Phosphate changes effect of humic acids on TiO2 photocatalysis: from inhibition to mitigation of electron–hole recombination. Environ Sci Technol. 2016;51:514–521. doi: 10.1021/acs.est.6b04845
  • Moradi M, Ghanbari F, Manshouri M, et al. Photocatalytic degradation of azo dye using nano-ZrO2/UV/persulfate: Response surface modeling and optimization. Korean J Chem Eng. 2016;33(2):539–546. doi: 10.1007/s11814-015-0160-5
  • Zazouli MA, Ghanbari F, Yousefi M, et al. Photocatalytic degradation of food dye by Fe3O4–TiO2 nanoparticles in presence of peroxymonosulfate: The effect of UV sources. J Environ Chem Eng. 2017;5:2459–2468. doi: 10.1016/j.jece.2017.04.037
  • Huang D, Liao S, Liu J, et al. Preparation of visible-light responsive N-F-codoped TiO2 photocatalysts by a sol-gel solvothermal method. J Photochem Photobiol A: Chem. 2006;184(3):282–288. doi: 10.1016/j.jphotochem.2006.04.041
  • Pei F, Liu Y, Xu S, et al. Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. Int J Hydrogen Energy. 2013;38(6):2670–2677. doi: 10.1016/j.ijhydene.2012.12.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.