103
Views
1
CrossRef citations to date
0
Altmetric
Articles

Application of central composite design to reveal resin deterioration during the removal of hexavalent chromium from wastewater

ORCID Icon, , , &
Pages 298-305 | Received 26 Mar 2019, Accepted 29 May 2019, Published online: 21 Jun 2019

References

  • Edebali S, Pehlivan E. Evaluation of amberlite IRA96 and Dowex 1 × 8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chem Eng J. 2010;161:161–166. doi: 10.1016/j.cej.2010.04.059
  • Hans R, Senanayake G, Dharmasiri LCS, et al. A preliminary batch study of sorption kinetics of Cr(VI) ions from aqueous solutions by a magnetic ion exchange (MIEX (R)) resin and determination of film/pore diffusivity. Hydrometallurgy. 2016;164:208–218. doi: 10.1016/j.hydromet.2016.06.007
  • Ribeiro C, Scheufele FB, Espinoza-Quinones FR, et al. A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio-residue, mineral and commercial adsorbent materials. J Mater Sci. 2018;53:7976–7995. doi: 10.1007/s10853-018-2150-6
  • Domini CE, Hidalgo M, Marken F, et al. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: closed microwaves, open microwaves and ultrasound irradiation. Anal Chim Acta. 2006;569:275–276. doi: 10.1016/j.aca.2006.03.089
  • Yang JK, Lee SM, Siboni MS. Effect of different types of organic compounds on the photocatalytic reduction of Cr(VI). Environ Technol. 2012;33:2027–2032. doi: 10.1080/09593330.2012.655325
  • Neagu V, Mikhalovsky S. Removal of hexavalent chromium by new quaternized crosslinked poly(4-vinylpyridines). J Hazard Mater. 2010;183:533–540. doi: 10.1016/j.jhazmat.2010.07.057
  • Kumar PS, Kirthika K, Kumar KS. Removal of hexavalent chromium ions from aqueous solutions by an anion-exchange resin. Adsorpt Sci Technol. 2008;26:693–703. doi: 10.1260/026361708788251402
  • Yang J, Yu M, Qiu T. Adsorption thermodynamics and kinetics of Cr(VI) on KIP210 resin. J Ind Eng Chem. 2014;20:480–486. doi: 10.1016/j.jiec.2013.05.005
  • Kusku O, Rivas BL, Urbano BF, et al. A comparative study of removal of Cr(VI) by ion exchange resins bearing quaternary ammonium groups. J Chem Technol Biotechnol. 2014;89:851–857. doi: 10.1002/jctb.4320
  • Zang Y, Yue Q, Kan Y, et al. Research on adsorption of Cr(VI) by poly-epichlorohydrin-dimethylamine (EPIDMA) modified weakly basic anion exchange resin D301. Ecotox Environ Safe. 2018;161:467–473. doi: 10.1016/j.ecoenv.2018.06.020
  • Singare PU. Studies on kinetics and thermodynamics of ion adsorption reactions by applications of short-lived radioactive tracer isotopes. Ionics (Kiel). 2016;22:1433–1443. doi: 10.1007/s11581-016-1651-z
  • Singare PU. Radiotracer application for characterization of nuclear grade anion exchange resins tulsion A-23 and dowex SBR LC. Kerntechnik. 2015;80:575–582. doi: 10.3139/124.110554
  • Singare P. Radioactive tracer application to study the thermodynamics of ion exchange reactions using tulsion A-23 and indion-454. Ionics (Kiel). 2015;21:1623–1630. doi: 10.1007/s11581-014-1345-3
  • Singare PU. Non destructive application of radioactive tracer technique for characterization of industrial grade anion exchange resins Indion GS-300 and Indion-860. Nucl Eng Technol. 2014;46:93–100. doi: 10.5516/NET.07.2013.048
  • Sherlala AIA, Raman AAA, Bello MM. Synthesis and characterization of magnetic graphene oxide for arsenic removal from aqueous solution. Environ Technol. 2019;40:1508–1516. doi: 10.1080/09593330.2018.1424259
  • Pinto CF, Antonelli R, de Araujo KS, et al. Experimental-design-guided approach for the removal of atrazine by sono-electrochemical-UV-chlorine techniques. Environ Technol. 2019;40:430–440. doi: 10.1080/09593330.2017.1395480
  • Arruda PM, Pereira-Filho ER, Libanio M, et al. Response surface methodology applied to tropical freshwater treatment. Environ Technol. 2018: 1–11. doi: 10.1080/09593330.2018.1514072
  • da Silva LDM, Gozzi F, Sires I, et al. Degradation of 4-aminoantipyrine by electro-oxidation with a boron-doped diamond anode: optimization by central composite design, oxidation products and toxicity. Sci Total Environ. 2018;631–632:1079–1088. doi: 10.1016/j.scitotenv.2018.03.092
  • Espina de Franco MA, da Silva WL, Bagnara M, et al. Photocatalytic degradation of nicotine in an aqueous solution using unconventional supported catalysts and commercial ZnO/TiO2 under ultraviolet radiation. Sci Total Environ. 2014;494:97–103. doi: 10.1016/j.scitotenv.2014.06.139
  • Mosaddeghi MR, Pajoum Shariati F, Vaziri Yazdi SA, et al. Application of response surface methodology (RSM) for optimizing coagulation process of paper recycling wastewater using ocimum basilicum. Environ Technol. 2018: 1–9. doi: 10.1080/09593330.2018.1491637
  • Alayan HM, Alsaadi MA, AlOmar MK, et al. Growth and optimization of carbon nanotubes in powder activated carbon for an efficient removal of methylene blue from aqueous solution. Environ Technol. 2018: 1–16. doi: 10.1080/09593330.2018.1441911
  • Pinto CF, Antonelli R, de Araujo KS, et al. Experimental-design-guided approach for the removal of atrazine by sono-electrochemical-UV-chlorine techniques. Environ Technol. 2017: 1–11.
  • Wang W, Li X, Yuan S, et al. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins. Chemosphere. 2016;160:71–79. doi: 10.1016/j.chemosphere.2016.06.073
  • Kapoor V, Elk M, Li X, et al. Effects of Cr(III) and Cr(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments. Chemosphere. 2016;147:361–367. doi: 10.1016/j.chemosphere.2015.12.119
  • Jiang M, Zheng Z. Effects of multiple environmental factors on the growth and extracellular organic matter production of Microcystis aeruginosa: a central composite design response surface model. Environ Sci Pollut R. 2018: 23276–23285. doi: 10.1007/s11356-018-2009-z
  • Gengec NA, Isgoren M, Kobya M, et al. Optimization of beidellite/polyaniline production conditions by central composite design for removal of acid yellow 194. J Polym Environ. 2018;26:2619–2631. doi: 10.1007/s10924-017-1157-4
  • Bajpai S, Gupta SK, Dey A, et al. Application of central composite design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: modeling, optimization, and study of interactive variables. J Hazard Mater. 2012;227:436–444. doi: 10.1016/j.jhazmat.2012.05.016
  • Zbair M, Anfar Z, Ait Ahsaine H, et al. Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: operational factors, mechanism and performance optimization using central composite design and surface modeling. J Environ Manage. 2018;206:383–397. doi: 10.1016/j.jenvman.2017.10.058
  • Yoshinaga M, Ninomiya H, Al Hossain MMA, et al. A comprehensive study including monitoring, assessment of health effects and development of a remediation method for chromium pollution. Chemosphere. 2018;201:667–675. doi: 10.1016/j.chemosphere.2018.03.026
  • Yu S, Liu Y, Ai Y, et al. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions. Environ Pollu. (Barking, Essex: 1987). 2018;242:1–11. doi: 10.1016/j.envpol.2018.06.031
  • Marinho BA, Cristovao RO, Djellabi R, et al. Strategies to reduce mass and photons transfer limitations in heterogeneous photocatalytic processes: hexavalent chromium reduction studies. J Environ Manage. 2018;217:555–564. doi: 10.1016/j.jenvman.2018.04.003
  • Park D, Yun Y-S, Ahn CK, et al. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere. 2007;66:939–946. doi: 10.1016/j.chemosphere.2006.05.068
  • Gossard A, Lepeytre C. An innovative green process for the depollution of Cr(VI)-contaminated surfaces using TiO2-based photocatalytic gels. J Environ Chem Eng. 2017;5:5573–5580. doi: 10.1016/j.jece.2017.10.026
  • Liu C, Ding Y, Wu W, et al. A simple and effective strategy to fast remove chromium (VI) and organic pollutant in photoelectrocatalytic process at low voltage. Chem Eng J. 2016;306:22–30. doi: 10.1016/j.cej.2016.07.043
  • Bajpai S, Dey A, Jha MK, et al. Removal of hazardous hexavalent chromium from aqueous solution using divinylbenzene copolymer resin. Int J Environ Sci Tech. 2012;9:683–690. doi: 10.1007/s13762-012-0099-6
  • Duan Z, Gu Y, Deng Y. Green and moisture-stable Lewis acidic ionic liquids (choline chloride center dot xZnCl(2)) catalyzed protection of carbonyls at room temperature under solvent-free conditions. Catal Commun. 2006;7:651–656. doi: 10.1016/j.catcom.2006.02.008
  • Fahmy K, Jager F, Beck M, et al. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: A Fourier-transform infrared spectroscopy study of site-directed mutants. P Natl Acad Sci USA. 1993;90:10206–10210. doi: 10.1073/pnas.90.21.10206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.