325
Views
4
CrossRef citations to date
0
Altmetric
Articles

Cr2S3(Et2DTC) complex and [Cr2S3-MoS2(Et2DTC)] bilayer thin films: single source stationed fabrication, compositional, optical, microstructural and electrochemical investigation

ORCID Icon, &
Pages 444-458 | Received 18 Dec 2018, Accepted 09 Jun 2019, Published online: 24 Jun 2019

References

  • Slimane AB, Al-Hossainy AF, Zoromba MS. Synthesis and optoelectronic properties of conductive nanostructured poly (aniline-co-o-aminophenol) thin film. J Mat Sci: Mat Elect. 2018;29:8431–8445.
  • Al-Hossainy AF, Thabet HK, Zoromba MS, et al. Facile synthesis and fabrication of a poly (ortho-anthranilic acid) emeraldine salt thin film for solar cell applications. New J Chem. 2018;42:10386–10395. doi: 10.1039/C8NJ01204K
  • Al-Hossainy AF, Ibrahim A. The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films. Optic Mat. 2017;73:138–153. doi: 10.1016/j.optmat.2017.08.007
  • Zoromba MS, Al-Hossainy AF, Abdel-Aziz MH. Conductive thin films based on poly (aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications. Syn Metals. 2017;231:34–43. doi: 10.1016/j.synthmet.2017.06.021
  • Al-Hossainy AF, Zoromba MS. Doped-poly (para-nitroaniline-co-aniline): synthesis, semiconductor characteristics, density, functional theory and photoelectric properties. J Alloys Comp. 2019;789:1–10. doi: 10.1016/j.jallcom.2019.03.118
  • Akhtar MS, Malik MA, Alghamdi YG, et al. Chemical bath deposition of Fe-doped ZnS thin films: investigations of their ferromagnetic and half-metallic properties. Mat Sci Semi Proc. 2015;39:283–291. doi: 10.1016/j.mssp.2015.05.017
  • Saeed S, Ahmed KS, Rashid N, et al. Symmetrical and unsymmetrical nickel (II) complexes of N-(dialkylcarbamothioyl)-nitro substituted benzamide as single-source precursors for deposition of nickel sulfide nanostructured thin films by AACVD. Polyhedron. 2015;85:267–274. doi: 10.1016/j.poly.2014.08.023
  • Khan SA, Noreen F, Kanwal S, et al. Comparative synthesis, characterization of Cu-doped ZnO nanoparticles and their antioxidant, antibacterial, antifungal and photocatalytic dye degradation activities. Dig J Nanomater Biostruct. 2017;12:877–879.
  • Khan SA, Kanwal S, Rizwan K, et al. Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and Co-doped SnO2 nanoparticles from Clerodendrum inerme. Microb Pathogen. 2018;125:366–384. doi: 10.1016/j.micpath.2018.09.041
  • Khan SA, Shahid S, Jabin S, et al. Synthesis and characterization of un-doped and copper-doped zinc oxide nanoparticles for their optical and antibacterial studies. Dig J Nanomater Biostruct. 2018;13:285–297.
  • Ahmad W, Khan SA, Munawar KS, et al. Synthesis, characterization and pharmacological evaluation of mixed ligand-metal complexes containing omeprazole and 8-hydroxyquinoline. J Trop Pharma Res. 2017;16:1137–1146. doi: 10.4314/tjpr.v16i5.23
  • Khan SA, Noreen F, Kanwal S, et al. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng. 2018;82:46–59. doi: 10.1016/j.msec.2017.08.071
  • Ijaz F, Shahid S, Khan SA, et al. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activities. J Trop Pharma Res. 2017;16:743–753. doi: 10.4314/tjpr.v16i4.2
  • Khan SA, Shahid S, Kanwal S, et al. Synthesis characterization and antibacterial activity of Cr (III), Co (III), Fe (II), Cu (II), Ni (III) complexes of 4-(2-(((2-hydroxy-5-nitrophenyl) diazenyl)(phenyl) methylene) hydrazinyl) benzene sulfonic acid based formazan dyes and their applications on leather. Dyes Pig. 2018;148:31–43. doi: 10.1016/j.dyepig.2017.08.058
  • Khan SA, Ahmad W, Munawar KS, et al. Synthesis, spectroscopic characterization and biological evaluation of Ni (II), Cu (II) and Zn (II) complexes of diphenyldithiocarbamate. J Indian Pharma Sci. 2018;80:480–488.
  • Khan SA, Shahid S, Kanwal S, et al. Synthesis of novel metal complexes of 2-((phenyl (2-(4-sulfophenyl) hydrazono) methyl) diazenyl) benzoic acid formazan dyes: characterization, antimicrobial and optical properties studies on leather. J Mol Struct. 2019;1175:73–89. doi: 10.1016/j.molstruc.2018.07.081
  • Khan SA, Shahid S, Nazir M, et al. Efficient template based synthesis of Ni nanorods by etching porous alumina for their enhanced photocatalytic activities against methyl red and methyl orange dyes. J Mol Struct. 2019;1184:316–323. doi: 10.1016/j.molstruc.2019.02.038
  • Qamar MA, Shahid S, Khan SA, et al. Synthesis characterization, optical and antibacterial studies of Co-doped SnO2 nanoparticles. Dig J Nanomater Biostruct. 2017;12:1127–1135.
  • Makhsoos A, Mousazadeh H, Mohtasebi SS, et al. Design, simulation and experimental evaluation of energy system for an unmanned surface vehicle. Energy. 2018;148:362–372. doi: 10.1016/j.energy.2018.01.158
  • Fahlman BD. What is “materials chemistry”? In: Materials chemistry. Dordrecht: Springer; 2018. p. 1–21.
  • Ferreira A, Kunh SS, Fagnani KC, et al. Economic overview of the use and production of photovoltaic solar energy in Brazil. Renew Sustain Energy Rev. 2018;81:181–191. doi: 10.1016/j.rser.2017.06.102
  • Vaqueiro P, Szkoda I, Sanchez RD, et al. Ternary erbium chromium sulfides: structural relationships and magnetic properties. Inorg Chem. 2009;48:1284–1292. doi: 10.1021/ic801482a
  • Lade M, Mays H, Schmidt J, et al. On the nanoparticle synthesis in microemulsions: detailed characterization of an applied reaction mixture. Colloids Surf A. 2000;163:3–15. doi: 10.1016/S0927-7757(99)00425-2
  • Maignan A, Guilmeau E, Gascoin F, et al. Revisiting some chalcogenides for thermoelectricity. Sci Technol Adv Mat. 2012;13:1–9. doi: 10.1088/1468-6996/13/5/053003
  • Hussain W, Badshah A, Hussain RA, et al. Photocatalytic applications of Cr2S3 synthesized from single and multi-source precursors. Mater Chem Phy. 2017;194:345–355. doi: 10.1016/j.matchemphys.2017.04.001
  • Nabavi A, Goroshin S, Frost DL, et al. Mechanical properties of chromium–chromium sulfide cermets fabricated by self-propagating high-temperature synthesis. J Mat Sci. 2015;50:3434–3446. doi: 10.1007/s10853-015-8902-7
  • Yu XY, Hu H, Wang Y, et al. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew Chem Int Ed. 2015;54:7395–7398. doi: 10.1002/anie.201502117
  • Yan Y, Ge X, Liu Z, et al. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale. 2013;5:7768–7771. doi: 10.1039/c3nr02994h
  • Xu X, Fan Z, Ding S, et al. Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale. 2014;6:5245–5250. doi: 10.1039/C3NR06736J
  • Hu Z, Wang L, Zhang K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed. 2014;53:12794–12798. doi: 10.1002/anie.201407898
  • Zhang L, Wu HB, Yan Y, et al. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Envir Sci. 2014;7:3302–3306. doi: 10.1039/C4EE01932F
  • Macreadie LK, Forsyth CM, Turner DR, et al. Cadmium tris (dithiocarbamate) ionic liquids as single source, solvent-free cadmium sulfide precursors. Chem Comm. 2018;54:8925–8928. doi: 10.1039/C8CC03737J
  • Halimehjani AZ, Movahed FS, Fathi MB, et al. Investigation of complexation behavior of the dithiocarbamates of N1, Nn-dicinnamylalkane-1, n-diamines with metals. J Mol Struct. 2019;1180:188–195. doi: 10.1016/j.molstruc.2018.11.102
  • Chauhan HP, Carpenter N, Carpenter J, et al. Mixed arsenic (III) bis (dimethyldithiocarbamato) derivatives with some oxygen and sulfur donor ligands. J Mol Struct. 2019;1187:68–76. doi: 10.1016/j.molstruc.2019.03.059
  • Hogarth G. Transition metal dithiocarbamates: 1978–2003. Prog Inorg Chem. 2005;53:71–561. doi: 10.1002/0471725587.ch2
  • Schubart R. Sulfinic acids and derivatives. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2000. doi:10.1002/14356007.a09_001.
  • Sedlacek J, Martins LM, Danek P, et al. Diethyldithiocarbamate complexes with metals used as food supplements show different effects in cancer cells. J Appl Biomed. 2014;12:301–308. doi: 10.1016/j.jab.2014.04.002
  • Silva HV, Porto AO, Caliman CC, et al. Direct synthesis of porous carbon materials prepared from diethyldithiocarbamate metal complexes and their electrochemical behavior. J Brazil Chem Soc. 2018;29:1904–1916.
  • Ly NH, Nguyen TD, Zoh KD, et al. Interaction between diethyldithiocarbamate and Cu (II) on gold in non-cyanide wastewater. Sensors. 2017;17:1–11. doi: 10.3390/s17112628
  • Andersen O, Aaseth J. A review of pitfalls and progress in chelation treatment of metal poisonings. J Trace Elem Med Biol. 2016;38:74–80. doi: 10.1016/j.jtemb.2016.03.013
  • Tao J, Chai J, Lu X, et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale. 2015;7:2497–2503. doi: 10.1039/C4NR06411A
  • Niu T, Li A. From two-dimensional materials to heterostructures. Prog Surf Sci. 2015;90:21–45. doi: 10.1016/j.progsurf.2014.11.001
  • Pinto G, Silva FJ, Porteiro J, et al. A critical review on the numerical simulation related to physical vapour deposition. Proced Manufact. 2018;17:860–869. doi: 10.1016/j.promfg.2018.10.138
  • Bussolotti F, Chai J, Yang M, et al. Electronic properties of atomically thin MoS2 layers grown by physical vapour deposition: band structure and energy level alignment at layer/substrate interfaces. RSC Adv. 2018;8:7744–7752. doi: 10.1039/C8RA00635K
  • Jaffri SB, Ahmad KS. Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles. Artif Cells Nanomed Biotech. 2017;46:1–11.
  • Jaffri SB, Ahmad KS. Prunus cerasifera Ehrh. fabricated ZnO nano falcates and its photocatalytic and dose dependent in vitro bio-activity. Open Chem. 2018;16:141–154. doi: 10.1515/chem-2018-0022
  • Jaffri SB, Ahmad KS. Phytofunctionalized silver nanoparticles: green biomaterial for biomedical and environmental applications. Rev Inorg Chem. 2018;38:127–149. doi: 10.1515/revic-2018-0004
  • Jaffri SB, Ahmad KS. Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles. Envir Technol. 2018: 1–42. doi: 10.1080/09593330.2018.1488888
  • Jaffri SB. Ahmad KS Foliar-mediated Ag: ZnO nanophotocatalysts: green synthesis, characterization, pollutants degradation, and in vitro biocidal activity. Green Proc Syn. 2018;8:1–10.
  • Ahmad KS, Jaffri SB. Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators. Open Chem. 2018;16:556–570. doi: 10.1515/chem-2018-0060
  • Ahmad KS, Jaffri SB. Carpogenic ZnO nanoparticles: amplified nanophotocatalytic and antimicrobial action. IET Nanobiotech. 2018;2018:1–10.
  • Saito Y, Kikuchi T, editors. Voltammetry: theory, types and applications. Hauppauge (NY): Nova Publishers; 2014; pp. 1–349.
  • Guy OJ, Walker KA. Graphene functionalization for biosensor applications. Silicon Carbide Biotechnol. 2nd Ed. 2016: 85–141. doi: 10.1016/B978-0-12-802993-0.00004-6
  • Scherrer P. Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Mathematisch-Physikalische Klasse. 1918;2:98–100.
  • Ahmad KS, Hussain Z, Synthesis MS. Characterization and PVD assisted thin film fabrication of the nano-structured bimetallic Ni3S2/MnS2 composite. Surf Inter. 2018;12:190–195.
  • Majid S, Ahmad KS. Optical and morphological properties of environmentally benign Cu-Tin sulphide thin films grown by physical vapor deposition technique. Mat Res Exp. 2019;6:036406. doi: 10.1088/2053-1591/aaf454
  • Sharif S, Ahmad KS. Synthesis and physiognomic study of copper sulfide doped cobalt sulfide. Mat Res Exp. 2019;6:1–10. doi: 10.1088/2053-1591/aafb9e
  • Sharif S, Ahmad KS, Akhtar MS, et al. In Situ synthesis and deposition of un-doped and doped magnesium sulfide thin films by green technique. Optik. 2019;182:1–10. doi: 10.1016/j.ijleo.2018.12.108
  • McCluskey MD. High-pressure IR. In: Lindon JC, Tranter GE, Koppenaal DW, editors. Encyclopedia of spectroscopy and spectrometry. 3rd ed., Vol. 2, Oxford: Elsevier; 2017. p. 122–125.
  • Gupta AN, Singh V, Kumar V, et al. Syntheses, crystal structures and conducting properties of new homoleptic copper (II) dithiocarbamate complexes. Inorg Chim Acta. 2013;408:145–151. doi: 10.1016/j.ica.2013.09.006
  • Ferreira IP, de Lima GM, Paniago EB, et al. Synthesis, characterization and antifungal activity of new dithiocarbamate-based complexes of Ni (II), Pd (II) and Pt (II). Inorg Chim Acta. 2014;423:443–449. doi: 10.1016/j.ica.2014.09.002
  • Gupta AN, Kumar V, Singh V, et al. Influence of functionalities on the structure and luminescent properties of organotin (IV) dithiocarbamate complexes. J Organomet Chem. 2015;787:65–72. doi: 10.1016/j.jorganchem.2015.03.034
  • Shapiro IP. Determination of the forbidden zone width from diffuse reflection spectra. Optik i spektro. 1958;4:256–260.
  • Dolgonos A, Mason TO, Poeppelmeier KR. Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J Solid State Chem. 2016;240:43–48. doi: 10.1016/j.jssc.2016.05.010
  • López R, Gómez R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-gel Sci Tech. 2012;61:1–7. doi: 10.1007/s10971-011-2582-9
  • Böker T, Severin R, Müller A, et al. Band structure of MoS2, MoSe2, and α−MoTe2: angle-resolved photoelectron spectroscopy and ab initio calculations. Phy Rev B. 2001;64(23):235305. doi: 10.1103/PhysRevB.64.235305
  • Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phy Rev Lett. 2010;105:136805. doi: 10.1103/PhysRevLett.105.136805
  • Komsa HP, Krasheninnikov AV. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phy Rev B. 2012;86:241201. doi: 10.1103/PhysRevB.86.241201
  • Dileep K, Sahu R, Sarkar S, et al. Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy. J Appl Phy. 2016;119:114309. doi: 10.1063/1.4944431
  • Osten HJ, Liu JP, Müssig HJ. Band gap and band discontinuities at crystalline Pr2O3/Si(001) heterojunctions. Appl Phys Lett. 2002;80:297–299. doi: 10.1063/1.1433909
  • Shao LX, Chang KH, Hwang HL. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications. Appl Surf Sci. 2003;212–213:305–310. doi: 10.1016/S0169-4332(03)00085-0
  • Jayalakshmi M, Rao MM. Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications. J Power Sources. 2006;157:624–629. doi: 10.1016/j.jpowsour.2005.08.001
  • Anandraj J, Joshi GM. Cubi2s3 precursor based polymer composites for low frequency capacitor applications. J Mater Sci. 2016;27:10550–10561.
  • Makinistian L, Albanesi EA. Study of the hydrostatic pressure on orthorhombic IV–VI compounds including many-body effects. Comput Mat Sci. 2011;50:2872–2879. doi: 10.1016/j.commatsci.2011.05.002
  • Almond MJ, Redman H, Rice DA. Growth of thin layers of metal sulfides by chemical vapour deposition using dual source and single source precursors. J Mat Chem. 2000;10:2842–2846. doi: 10.1039/b005860m
  • Thi KL, Nguyen LT, Ke NH, et al. The morphology and optical properties of ZnO nanorods grown on MoS2 thin films at various thicknesses using a chemical bath deposition method. J Elect Mat. 2018;47:6302–6310. doi: 10.1007/s11664-018-6536-7
  • Sharma S, Kumar A, Kaur D. Room temperature ammonia gas sensing properties of MoS2 nanostructured thin film. AIP Conference Proceed. 2018;1953:030261. doi: 10.1063/1.5032596
  • Waite AR, Pacley S, Glavin NR, et al. Tailoring ultra-thin MoS2 films via post-treatment of solid state precursor phases. Thin Solid Films. 2018;649:177–186. doi: 10.1016/j.tsf.2018.01.034
  • Kaneshiro J, Gaillard N, Rocheleau R, et al. Advances in copper-chalcopyrite thin films for solar energy conversion. Solar Energy Mat Solar Cells. 2010;94:12–16. doi: 10.1016/j.solmat.2009.03.032
  • Kale SB, Lokhande AC, Pujari RB. Cobalt sulfide thin films for electrocatalytic oxygen evolution reaction and supercapacitor applications. J Colloid Inter Sci. 2018;532:491–499. doi: 10.1016/j.jcis.2018.08.012
  • Zhou Y, Fan X, Zhang G, et al. Fabricating MoS2 nanoflakes photoanode with unprecedented high photoelectrochemical performance and multi-pollutants degradation test for water treatment. J Chem Eng. 2019;356:1003–1013. doi: 10.1016/j.cej.2018.09.097
  • Qu Q, Liang J, Sou IK. MBE-grown Bi2Te3 thin films as an efficient hydrogen evolution electrocatalyst. arXiv Preprint ArXiv:1807.09957. 2018: 1–10.
  • Yan M, Zhou X, Pan X, et al. Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Res. 2018;11:3205–3212. doi: 10.1007/s12274-017-1802-1
  • Duan J, Chen S, Jaroniec M, et al. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano. 2015;9:931–940. doi: 10.1021/nn506701x
  • Abaci U, Guney HY, Kadiroglu U. Morphological and electrochemical properties of PPy, PAni bilayer films and enhanced stability of their electrochromic devices (PPy/PAni–PEDOT, PAni/PPy–PEDOT). Electrochim Acta. 2013;96:214–224. doi: 10.1016/j.electacta.2013.02.120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.