176
Views
1
CrossRef citations to date
0
Altmetric
Articles

Co-biodegradation of naphthenic acids in anoxic denitrifying biofilm reactors

&
Pages 984-1000 | Received 19 Dec 2018, Accepted 25 Jul 2019, Published online: 04 Aug 2019

References

  • National Energy Board. Canada’s Energy Future. 2017. [cited 2018 March 15]. Available from https://www.neb-one.gc.ca/nrg/ntgrtd/ftr/2017/pblctn-eng.html.
  • Natural Resources Canada. 2016. Energy Fact Book 2016–2017; p. 1–132.
  • Clemente JS, MacKinnon MD, Fedorak PM. Aerobic biodegradation of two commercial naphthenic acids preparations. Environ Sci Technol. 2004;38:1009–1016. doi: 10.1021/es030543j
  • Allen EW. Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives. J Environ Eng Sci. 2008;7:123–138. doi: 10.1139/S07-038
  • Kannel PR, Gan TY. Naphthenic acids degradation and toxicity mitigation in tailings wastewater systems and aquatic environments: a review. J Environ Sci Health Part A. 2012;47:1–21. doi: 10.1080/10934529.2012.629574
  • Li C, Stafford J, Belosevic M, et al. The toxicity of oil sands process-affected water (OSPW): a critical review. Sci Total Environ. 2017;601-602:1785–1802. doi: 10.1016/j.scitotenv.2017.06.024
  • Hersikorn BD, Ciborowski JJC, Smits JEG. The effects of oil sands wetlands on wood frogs (Rana sylvatica). Toxicol Environ Chem. 2010;92:1513–1527. doi: 10.1080/02772240903471245
  • Anderson J, Wiseman SB, Moustafa A, et al. Effects of exposure to oil sands process-affected water from experimental reclamation ponds on Chironomus dilutus. Water Res. 2012;46:1662–1672. doi: 10.1016/j.watres.2011.12.007
  • Hagen MO, Katzenback BA, Islam MDS, et al. The analysis of goldfish (Carassius auratus L.) innate immune responses after acute and sub-chronic exposures to oil sands process-affected water. Toxicol Sci. 2014;138:59–68. doi: 10.1093/toxsci/kft272
  • Kavanagh RJ, Frank RA, Oakes KD, et al. Fathead minnow (Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters. Aquat Toxicol. 2011;101:214–220. doi: 10.1016/j.aquatox.2010.09.021
  • Kavanagh RJ, Frank RA, Solomon KR, et al. Reproductive and health assessment of fathead minnows (Pimephales promelas) inhabiting a pond containing oil sands process-affected water. Aquat Toxicol. 2013;130–131:201–209. doi: 10.1016/j.aquatox.2013.01.007
  • McQueen AD, Hendrikse M, Gaspari DP, et al. Performance of a hybrid pilot-scale constructed wetland system for treating oil sands process-affected water from the Athabasca oil sands. Ecol Eng. 2017;102:152–165. doi: 10.1016/j.ecoleng.2017.01.024
  • McQueen AD, Kinley CM, Hendrikse M, et al. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca oil sands region. Chemosphere. 2017;173:340–350. doi: 10.1016/j.chemosphere.2017.01.072
  • Quesnel DM, Oldenburg TB P, Larter SR, et al. Biostimulation of oil sands process-affected water with phosphate yields removal of sulfur-containing organics and detoxification. Environ Sci Technol. 2015;49:13012–13020. doi: 10.1021/acs.est.5b01391
  • Sun C, Shotyk W, Cuss CW, et al. Characterization of naphthenic acids and other dissolved organics in natural water from the Athabasca oil sands region, Canada. Environ Sci Technol. 2017;51:9524–9532. doi: 10.1021/acs.est.7b02082
  • Quinlan PJ, Tam KC. Water treatment technologies for the remediation of naphthenic acids in oil sands process-affected water. Chem Eng J. 2015;279:696–714. doi: 10.1016/j.cej.2015.05.062
  • Afzal A, Drzewicz P, Perez-Estrada LA, et al. Effect of molecular structure on the relative reactivity of naphthenic acids in the UV/H2O2 advanced oxidation process. Environ Sci Technol. 2012;46:10727–10734. doi: 10.1021/es302267a
  • Muñoz I, Rieradevall J, Torrades F, et al. Environmental assessment of different solar driven advanced oxidation processes. Sol Energy. 2005;79:369–375. doi: 10.1016/j.solener.2005.02.014
  • Oller I, Malato S, Sánchez-Pérez JA. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ. 2011;409:4141–4166. doi: 10.1016/j.scitotenv.2010.08.061
  • Ajaero C, Peru KM, Simair M, et al. Fate and behavior of oil sands naphthenic acids in a pilot-scale treatment wetland as characterized by negative-ion electrospray ionization Orbitrap mass spectrometry. Sci Total Environ. 2018;631-632:829–839. doi: 10.1016/j.scitotenv.2018.03.079
  • Huang J, Nemati M, Hill G, et al. Batch and continuous biodegradation of three model naphthenic acids in a circulating packed-bed bioreactor. J Haz Mat. 2102;201:132–140.
  • Demeter MA, Lemire J, George I, et al. Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere. 2014;97:78–85. doi: 10.1016/j.chemosphere.2013.11.016
  • D’Souza L, Sami Y, Nemati M, et al. Continuous co-biodegradation of linear and cyclic naphthenic acids in circulating packed-bed bioreactors. Environ Prog Sustain Energ. 2014;33:835–843. doi: 10.1002/ep.11856
  • McKenzie N, Yue S, Liu X, et al. Biodegradation of naphthenic acids in oils sands process waters in an immobilized soil/sediment bioreactor. Chemosphere. 2014;109:164–172. doi: 10.1016/j.chemosphere.2014.02.001
  • Zhang Y, McPhedran KN, Gamal El-Din M. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water. Sci Total Environ. 2015;521-522:59–67. doi: 10.1016/j.scitotenv.2015.03.068
  • Frankel ML, Bhuiyan TI, Veksha A, et al. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour Technol. 2016;216:352–361. doi: 10.1016/j.biortech.2016.05.084
  • Yue S, Ramsay BA, Wang J, et al. Biodegradation and detoxification of naphthenic acids in oil sands process affected waters. Sci Total Environ. 2016;572:273–279. doi: 10.1016/j.scitotenv.2016.07.163
  • Huang C, Shi Y, Gamal El-Din M, et al. Performance of flocs and biofilms in integrated fixed-film activated sludge (IFAS) systems for the treatment of oil sands process-affected water (OSPW). Chem Eng J. 2017;314:368–377. doi: 10.1016/j.cej.2016.11.151
  • Gunawan Y, Nemati M, Dalai A. Biodegradation of a surrogate naphthenic acid under denitrifying conditions. Water Res. 2014;51:11–24. doi: 10.1016/j.watres.2013.12.016
  • Clothier LN, Gieg LM. Anaerobic biodegradation of surrogate naphthenic acids. Water Res. 2016;90:156–166. doi: 10.1016/j.watres.2015.12.019
  • Dong F, Nemati M. Anoxic biodegradation of a surrogate naphthenic acid coupled to reduction of nitrite. Biochem Eng J. 2016;110:84–94. doi: 10.1016/j.bej.2016.02.013
  • Folwell BD, McGenity TJ, Price A, et al. Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil-sands-process-affected waters. Int Biodet Biodeg. 2016;108:214–221. doi: 10.1016/j.ibiod.2014.12.016
  • Xue J, Zhang Y, Liu Y, et al. Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study. Biodegradation. 2016;27:247–264. doi: 10.1007/s10532-016-9770-9
  • Martin JW, Barri T, Han X, et al. Ozonation of oil sands process-affected water accelerates microbial bioremediation. Environ Sci Technol. 2010;44:8350–8356. doi: 10.1021/es101556z
  • Hwang G, Dong T, Islam MS, et al. The impacts of ozonation on oil sands process-affected water biodegradability and biofilm formation characteristics in bioreactors. Biores Technol. 2013;130:269–277. doi: 10.1016/j.biortech.2012.12.005
  • Shi Y, Huang C, Rocha KC, et al. Treatment of oil sands process-affected water using moving bed biofilm reactors: with and without ozone pretreatment. Biores Technol. 2015;192:219–227. doi: 10.1016/j.biortech.2015.05.068
  • Misiti T, Tandukar M, Tezel U, et al. Inhibition and biotransformation potential of naphthenic acids under different electron accepting conditions. Water Res. 2013;47:406–418. doi: 10.1016/j.watres.2012.10.019
  • Paslawski JC, Headley JV, Hill GA, et al. Biodegradation kinetics of trans-4-methyl-1-cyclohexane carboxylic acid. Biodegradation. 2009;20:125–133. doi: 10.1007/s10532-008-9206-2
  • Smith BE, Lewis CA, Belt ST, et al. Effects of alkyl chain branching on the biotransformation of naphthenic acids. Environ Sci Technol. 2008;42:9323–9328. doi: 10.1021/es801922p
  • Johnson RJ, Smith BE, Sutton PA, et al. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching. ISME J. 2011;5:486–496. doi: 10.1038/ismej.2010.146
  • Headley JV, Tanapat S, Putz G, et al. Biodegradation kinetics of geometric isomers of model naphthenic acids in Athabasca river water. Can Water Resour J. 2002;27:25–42. doi: 10.4296/cwrj2701025
  • Dhamole PB, Nair RR, D’Souza SF, et al. Simultaneous removal of carbon and nitrate in an airlift bioreactor. Bioresour Technol. 2009;100:1082–1086. doi: 10.1016/j.biortech.2008.07.060
  • Tran NH, Dong T, Urase T, et al. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol. 2013;146:721–731. doi: 10.1016/j.biortech.2013.07.083
  • Sarfaraz S, Thomas S, Tewari UK, et al. Anoxic treatment of phenolic wastewater in sequencing batch reactor. Water Res. 2004;38:965–971. doi: 10.1016/j.watres.2003.10.039
  • Zhu JH, Lin JP, Zhang B, et al. Simultaneous removal of phenol and nitrate in an anaerobic bioreactor. J Environ Eng. 2006;132:1073–1077. doi: 10.1061/(ASCE)0733-9372(2006)132:9(1073)
  • Bajaj M, Gallert C, Winter J. Effect of phenol addition on COD and nitrate removal in an anoxic suspension reactor. Bioresour Technol. 2010;101:5159–5167. doi: 10.1016/j.biortech.2010.02.015
  • Islam MS, Dong T, McPhedran KN, et al. Impact of ozonation pre-treatment of oil sands process-affected water on the operational performance of a GAC-fluidized bed biofilm reactor. Biodegradation. 2014;25:811–823. doi: 10.1007/s10532-014-9701-6
  • Huang C, Shi Y, Gamal El-Din M, et al. Treatment of oil sands process-affected water (OSPW) using ozonation combined with integrated fixed-film activated sludge (IFAS). Water Res. 2015;85:167–176. doi: 10.1016/j.watres.2015.08.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.