366
Views
6
CrossRef citations to date
0
Altmetric
Articles

Facile preparation of EDTA-functionalized magnetic chitosan for removal of co(II) from aqueous solutions

, , , , , , & show all
Pages 1313-1325 | Received 17 Jun 2019, Accepted 30 Aug 2019, Published online: 22 Sep 2019

References

  • Madadrang CJ, Kim HY, Gao G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces. 2012;4:1186–1193. doi: 10.1021/am201645g
  • Lakard S, Magnenet C, Mokhter MA, et al. Retention of Cu(II) and Ni(II) ions by filtration through polymer-modified membranes. Sep Purif Technol. 2015;149:1–8. doi: 10.1016/j.seppur.2015.05.028
  • Dabrowski A, Hubicki Z, Podkościelny P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004;56:91–106. doi: 10.1016/j.chemosphere.2004.03.006
  • Cai GB, Zhao GX, Wang XK, et al. Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J Phys Chem C. 2010;114:12948–12954. doi: 10.1021/jp103464p
  • Hua M, Jiang Y, Wu B, et al. Fabrication of a new hydrous Zr(IV) oxide-based nanocomposite for enhanced Pb(II) and Cd(II) removal from waters. ACS Appl Mater Interfaces. 2013;5:12135–12142. doi: 10.1021/am404031q
  • Fan C, Li K, Li J, et al. Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles. J Hazard Mater. 2016;326:211–220. doi: 10.1016/j.jhazmat.2016.12.036
  • Fan L, Zhang Y, Luo C, et al. Synthesis and characterization of magnetic β-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int J Biol Macromol. 2012;50:444–450. doi: 10.1016/j.ijbiomac.2011.12.016
  • Rao MM, Ramana DK, Seshaiah K, et al. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. J Hazard Mater. 2009;166:1006–1013. doi: 10.1016/j.jhazmat.2008.12.002
  • Chen H, Wang X, Li J, et al. Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. J Mater Chem. 2015;3:6073–6081. doi: 10.1039/C5TA00299K
  • Wang JL, Chen C. Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol. 2014;160:129–141. doi: 10.1016/j.biortech.2013.12.110
  • Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym. 2004;55:77–93. doi: 10.1016/j.carbpol.2003.08.005
  • Hu XJ, Wang JS, Liu YG, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J Hazard Mater. 2011;185:306–314. doi: 10.1016/j.jhazmat.2010.09.034
  • Monier M, Ayad DM, Wei Y, et al. Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater. 2010;177:962–970. doi: 10.1016/j.jhazmat.2010.01.012
  • Rämö J, Sillanpää M, Vickackaite V, et al. Chelating ability and solubility of DTPA, EDTA and β-ADA in alkaline hydrogen peroxide environment. J Pulp Paper Sci. 2000;26:125–131.
  • Kołodynska D, Hubicka H, Hubicki Z. Sorption of heavy metal ions from aqueous solutions in the presence of EDTA on monodisperse anion exchanger. Desalination. 2008;227:150–166. doi: 10.1016/j.desal.2007.06.022
  • Inoue K, Yoshizuka K, Ohto K. Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta. 1999;388:209–218. doi: 10.1016/S0003-2670(99)00090-2
  • Shimizu Y, Izumi S, Saito Y, et al. Ethylenediamine tetraacetic acid modification of crosslinked chitosan designed for a novel metal-ion adsorbent. J Appl Polym Sci. 2010;92:2758–2764. doi: 10.1002/app.20262
  • Noradoun CE, Cheng IF. EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system. Environ Sci Technol. 2005;39:7158–7163. doi: 10.1021/es050137v
  • Fan L, Luo C, Li X, et al. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater. 2012;215–216:272–279. doi: 10.1016/j.jhazmat.2012.02.068
  • Fan H L, Zhou S F, Jiao W Z, et al. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr Polym. 2017;174:1192–1200. doi: 10.1016/j.carbpol.2017.07.050
  • Fan H L, Li L, Zhou S F, et al. Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L -cysteine and their application in heavy metal adsorption. Ceram Int. 2016;42:4228–4237. doi: 10.1016/j.ceramint.2015.11.098
  • Shen XF, Wang Q, Chen WL, et al. One-step synthesis of water-dispersible cysteine functionalized magnetic Fe3O4 nanoparticles for mercury(II) removal from aqueous solutions. Appl Surf Sci. 2014;317:1028–1034. doi: 10.1016/j.apsusc.2014.09.033
  • Gao G, Liu X, Shi R, et al. Cryst Growth Des. 2010;10:2888–2894. doi: 10.1021/cg900920q
  • Tian H, Peng J, Du Q, et al. One-pot sustainable synthesis of magnetic MIL-100(Fe) with novel Fe3O4 morphology and its application in heterogeneous degradation. Dalton Trans. 2018;47:3417–3424. doi: 10.1039/C7DT04819J
  • Zhang Y, Zhang M, Yang J, et al. Formation of Fe3O4@SiO2@C/Ni hybrids with enhanced catalytic activity and histidine-rich protein separation. Nanoscale. 2016;8:15978. doi: 10.1039/C6NR05078F
  • Jiang W, Wang W, Pan B, et al. Facile Fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl Mater Interfaces. 2014;6:3421–3426. doi: 10.1021/am405562c
  • Li J, Jiang B, Liu Y, et al. Preparation and adsorption properties of magnetic chitosan composite adsorbent for Cu2+ removal. J Clean Prod. 2017;158:51–58. doi: 10.1016/j.jclepro.2017.04.156
  • Tan ZY, Peng H, Liu HF, et al. Facile preparation of EDTA-functionalized chitosan magnetic adsorbent for removal of Pb(II). J Appl Polym. 2015;132:42384.
  • Zhuang ST, Yin YN, Wang JL. Simultaneous detection and removal of cobalt ions from aqueous solution by modified chitosan beads. Int J Environ Sci Technol. 2017;15:385–394. doi: 10.1007/s13762-017-1388-x
  • Gwen L, Imelda K, Barry D, et al. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules. 2007;8:2533–2541. doi: 10.1021/bm070014y
  • Depan D, Girase B, Shah JS, et al. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater. 2011;7:3432–3445. doi: 10.1016/j.actbio.2011.05.019
  • Qin R, Li F, Chen M, et al. Preparation of chitosan-ethylenediaminetetraacetate-enwrapped magnetic CoFe2O4 nanoparticles via zero-length emulsion crosslinking method. Appl Surf Sci. 2009;256:27–32. doi: 10.1016/j.apsusc.2009.07.032
  • Tan LS, Xu J, Xue XQ, et al. Multifunctional nanocomposites Fe3O4@SiO2-mPD/SP for selective removal of Pb(II) and Cr(VI) from aqueous solutions. RSC Adv. 2014;4:45920–45929. doi: 10.1039/C4RA08040H
  • Larumbe S, Gómez-Polo C, Pérez-Landazábal JI, et al. Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. Phys Condens Mat. 2012;24:266007. doi: 10.1088/0953-8984/24/26/266007
  • Kavianian I, Plieger PG, Kandile NG, et al. Fixed-bed column studies on a modified chitosan hydrogel for detoxification of aqueous solution from copper(II). Carbohydr Polym. 2012;90:875–886. doi: 10.1016/j.carbpol.2012.06.014
  • Ren Y, Abbood H A, He F B, et al. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem Eng J. 2013;226:300–311. doi: 10.1016/j.cej.2013.04.059
  • Juang R S, Shao H J. Effect of pH on competitive adsorption of Cu(II), Ni(II), and Zn(II) from water onto chitosan Beads. Adsorption. 2002;8:71–78. doi: 10.1023/A:1015222607996
  • Fujita S, Sakairi N. Water soluble EDTA-linked chitosan as a zwitter ionic flocculant for pH sensitive removal of Cu(II) ion. RSC Adv. 2016;6:10385–10392. doi: 10.1039/C5RA24175H
  • Wang S, Terdkiatburana T, Tadé MO. Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems. Sep Purif Technol. 2008;62:64–70. doi: 10.1016/j.seppur.2008.01.004
  • Roosen J, Binnemans K. Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. Mater Chem A. 2014;2:1530–1540. doi: 10.1039/C3TA14622G
  • Zhao D, Zhang Q, Xuan H, et al. EDTA functionalized Fe3O4/graphene oxide for efficient removal of U(VI). J Colloid Interface Sci. 2017;506:300–307. doi: 10.1016/j.jcis.2017.07.057
  • Ho YS, Porter JF, Mckay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead. Single component systems. Water Air Soil Pollut. 2002;141:1–33. doi: 10.1023/A:1021304828010
  • He W, Guo X, Zheng J, et al. Structural evolution and compositional modulation of ZIF-8-derived hybrids comprised of metallic Ni nanoparticles and silica as interlayer. Inorg Chem. 2019;58:7255–7266. doi: 10.1021/acs.inorgchem.9b00288
  • Zheng J, Zhang M, Miao T, et al. Anchoring nickel nanoparticles on three dimensionally macro-/mesoporous titanium dioxide with a carbon layer from polydopamine using polymethylmethacrylate microspheres as sacrificial templates. Mater Chem Front. 2019;3:224–232. doi: 10.1039/C8QM00467F
  • Allen SJ, Mckay G, Porter JF. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Colloids Interface Sci. 2004;280:322–333. doi: 10.1016/j.jcis.2004.08.078
  • Chen YW, Wang JL. The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate modified magnetic chitosan. Nucl Eng Des. 2012;242:452–457. doi: 10.1016/j.nucengdes.2011.11.004
  • Wang HL, Tang HQ, Liu ZT, et al. Removal of cobalt(II) ion from aqueous solution by chitosan-montmorillonite. J Environ Sci. 2014;26:1879–1884. doi: 10.1016/j.jes.2014.06.021
  • Monier M, Ayad DM, Wei Y, et al. Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater. 2010;177:962–970. doi: 10.1016/j.jhazmat.2010.01.012
  • Repo E, Warchol JK, Kurniawan TA, et al. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J. 2010;161:73–82. doi: 10.1016/j.cej.2010.04.030
  • Chang Y-C, Chang S-W, Chen D-H. Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. React Funct Polym. 2006;66:335–341. doi: 10.1016/j.reactfunctpolym.2005.08.006
  • Monier M, Ayad DM, Wei Y, et al. Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. React Funct Polym. 2010;70:257–266. doi: 10.1016/j.reactfunctpolym.2010.01.002
  • Simsek S, Senol ZM, Ulusoy HI. Synthesis and characterization of a composite polymeric material including chelating agen for adsorption of uranyl ions. J Hazard Mater. 2017;338:437–446. doi: 10.1016/j.jhazmat.2017.05.059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.