231
Views
3
CrossRef citations to date
0
Altmetric
Articles

In situ field method for evaluating biodegradation potential of BTEX by indigenous heterotrophic denitrifying microorganisms in a BTEX-contaminated fractured-rock aquifer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1326-1335 | Received 24 Apr 2019, Accepted 10 Sep 2019, Published online: 25 Sep 2019

References

  • Beller HR, Edwards EA. Anaerobic toluene activation by benzylsuccinate synthase in a highly enriched methanogenic culture. Appl Environ Microb. 2000;66:5503–5505. doi: 10.1128/AEM.66.12.5503-5505.2000
  • Futamata H, Harayama S, Watanabe K. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated TCE bioremediation. Appl Environ Microbiol. 2001;67:4671–4677. doi: 10.1128/AEM.67.10.4671-4677.2001
  • Alfreider A, Vogt C, Babel W. Expression of chlorocatechol 1,2-dioxygenase and chlorocatechol 2,3-dioxygenase genes in chlorobenzene-contaminated subsurface samples. Appl Environ Microb. 2003;69:1372–1376. doi: 10.1128/AEM.69.3.1372-1376.2003
  • Baldwin BR, Nakatsu CH, Nies L. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microb. 2003;69:3350–3358. doi: 10.1128/AEM.69.6.3350-3358.2003
  • Wenderoth DF, Rosenbrock P, Abraham WR, et al. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. Microb Ecol. 2003;46:161–176. doi: 10.1007/s00248-003-2005-8
  • Balcke GU, Turunen LP, Geyer R, et al. Chlorobenzene biodegradation under consecutive aerobic-anaerobic conditions. FEMS Microbiol Ecol. 2004;49:109–120. doi: 10.1016/j.femsec.2003.08.014
  • Capiro NL, Stafford BP, Da Silva MLB, et al. Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank. Environ Microbiol. 2008;10:2236–2244. doi: 10.1111/j.1462-2920.2008.01645.x
  • Kao CH, Chen CS, Tsa FY, et al. Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J Hazard Mater. 2010;178:409–416. doi: 10.1016/j.jhazmat.2010.01.096
  • Chakraborty R, O’Connor SM, Chan E, et al. Anaerobic degradation of benzene, toluene, ethylbenzene and xylene by Dechloromonas strain RCB. Appl Environ Microbiol. 2005;71:8649–8655. doi: 10.1128/AEM.71.12.8649-8655.2005
  • Shinoda Y, Akagi J, Uchihashi Y, et al. Anaerobic degradation of aromatic compounds by Magnetospirillum strains: isolation and degradation genes. Biosci Biotechnol Biochem. 2005;69:1483–1491. doi: 10.1271/bbb.69.1483
  • Kasai Y, Takahata Y, Manefield M, et al. RNA based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol. 2006;72:3586–3592. doi: 10.1128/AEM.72.5.3586-3592.2006
  • Wohlbrand L, Kallerhoff B, Lange D, et al. Functional proteomic view of metabolic regulation in Aromatoleum aromaticum strain EbN1. Proteomics. 2007;7:2222–2239. doi: 10.1002/pmic.200600987
  • Weelink SAB, Van Doesburg W, Saia FT, et al. A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol. 2009;70:243–253. doi: 10.1111/j.1574-6941.2009.00778.x
  • Kunapuli U, Griebler C, Beller HR, et al. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol. 2008;10:1703–1712. doi: 10.1111/j.1462-2920.2008.01588.x
  • Kunapuli U, Jahn MK, Lueders T, et al. Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol. 2010;60:686–695. doi: 10.1099/ijs.0.003525-0
  • Ommedal H, Torsvik T. Desulfotignum toluenicmum sp. nov., a novel toluene-degrading, sulphate reducing bacterium isolated from an oil-reservoir model column. Int J Syst Evol Microbiol. 2007;57:2865–2869. doi: 10.1099/ijs.0.65067-0
  • Ficker M, Krastel K, Orlicky S, et al. Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol. 1999;65:5576–5585.
  • Schwarzenbach RP, Gschwend OM, Imboden DM. Environmental organic chemistry. New York: John Wiley & Sons; 1993.
  • Cho Y, Han K, Kim N, et al. Estimating in situ biodegradation rates of petroleum hydrocarbons and microbial population dynamics by performing single-well push–pull tests in a fractured bedrock aquifer. Water Air Soil Poll. 2013;224:1364–1377. doi: 10.1007/s11270-012-1364-5
  • Istok JD, Humphrey MD, Schroth MH, et al. Single-well push–pull test method for in situ determination of microbial metabolic activities. Ground Water. 1997;35:619–631. doi: 10.1111/j.1745-6584.1997.tb00127.x
  • Kim Y, Istok JD, Semprini L. Push–pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene. J Cont Hydrol. 2006;82:165–181. doi: 10.1016/j.jconhyd.2005.10.003
  • Leuthner B, Leutwein C, Schulz H, et al. Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol. 1998;28:615–628. doi: 10.1046/j.1365-2958.1998.00826.x
  • Harwood CS, Burchhardt G, Herrmann H, et al. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev. 1998;22:439–458. doi: 10.1111/j.1574-6976.1998.tb00380.x
  • Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995;163:96–103. doi: 10.1007/BF00381782
  • Dolfing J, Zeyer J, Bindereicher P, et al. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular-oxygen. Arch Microbiol. 1990;154:336–341. doi: 10.1007/BF00276528
  • Fries MR, Zhou JH, Chee-Sanford J, et al. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol. 1994;60:2802–2810.
  • Hess A, Zarda B, Hahn D, et al. In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol. 1997;63:2136–2141.
  • Coates JD, Chakraborty R, Lack JG, et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature. 2001;411:1039–1043. doi: 10.1038/35082545
  • Ball HA, Johnson HA, Reinhard M, et al. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J Bacteriol. 1996;178:5755–5761. doi: 10.1128/jb.178.19.5755-5761.1996
  • Evans PJ, Mang DT, Kim KS, et al. Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol. 1991;57:1139–1145.
  • Fries MR, Forney LJ, Tiedje JM. Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl Environ Microbiol. 1997;63:1523–1530.
  • Harms G, Rabus R, Widdel F. Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch Microbiol. 1999;172:303–312. doi: 10.1007/s002030050784
  • Mechichi T, Stackebrandt E, Gad’on N, et al. Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp nov., Thauera aminoaromatica sp nov., and Azoarcus buckelii sp nov. Arch Microbiol. 2002;178:26–35. doi: 10.1007/s00203-002-0422-6
  • Shinoda Y, Sakai Y, Uenishi H, et al. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp strain DNT-1. Appl Environ Microbiol. 2004;70:1385–1392. doi: 10.1128/AEM.70.3.1385-1392.2004
  • Harms G, Zengler K, Rabus R, et al. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol. 1999;65:999–1004.
  • Rabus R, Nordhaus R, Ludwig W, et al. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol. 1993;59:1444–1451.
  • Lovley D, Lonergan DJ. Anaerobic oxidation of toluene, phenol, and p-cresol by the disssimilatory iron-reducing organism, GS-15. Appl Environ Microbiol. 1990;56:1858–1864.
  • Coates JD, Bhupathiraju VK, Achenbach LA, et al. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol. 2001;51:581–588. doi: 10.1099/00207713-51-2-581

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.