327
Views
7
CrossRef citations to date
0
Altmetric
Articles

Lab-scale anaerobic digestion of cassava peels: the first step of energy recovery from cassava waste and water hyacinth

, , , &
Pages 1438-1451 | Received 17 Mar 2019, Accepted 11 Sep 2019, Published online: 11 Oct 2019

References

  • Hillocks RJ, Thresh JM, Bellotti A. Cassava: biology, production and utilization. New York (NY): CABI; 2002.
  • FAOSTAT. ‘Cassava production in the world,’ Rome-2016 [Online]; [cited 2017 Sep 26]. Available from: http://www.fao.org/faostat/fr/#data/QC
  • Soulé BG, Aboudou F, Gansari S, et al. (2013). Analyse de la structure et la dynamique de la chaîne de valeur du manioc au Bénin, Rapp. D’étude Réalisé Par Lab. D’Analyse Régionale D’Expertise Soc. LARES Cotonou Bénin.
  • Nago CM, et al. ‘La préparation artisanale du gari au Bénin : aspects technologiques et physico-chimiques = Artisanal gari production in Benin : technological and physico-chemical aspects – éditions ORSTOM,’ 1995.
  • Sriroth K, Piyachomkwan K, Wanlapatit S, et al. Cassava starch technology: the Thai experience. Starch – Stärke. Dec. 2000;52(12):439–449.
  • Kamaraj A, Gopal NO, Venkatachalam P, et al. Biofuel production from tapioca starch industry wastewater using a hybrid anaerobic reactor. Energy Sustain Dev. Sep. 2006;10(3):73–77.
  • Ekundayo JA. The filamentous fungi. In: Smith JE, Berry DR, Kristiasen B, editors. Fungal technology. Vol. IV. London: Academic Press; 1983. p. 145–170.
  • Hien PG, Oanh LTK, Viet NT, et al. Closed wastewater system in the tapioca industry in Vietnam. Water Sci Technol. Jan. 1999;39(5):89–96.
  • Colin X, Farinet JL, Rojas O, et al. Anaerobic treatment of cassava starch extraction wastewater using a horizontal flow filter with bamboo as support. Bioresour Technol. 2007;98(8):1602–1607.
  • Avancini SRP, Faccin GL, Vieira MA, et al. Cassava starch fermentation wastewater: characterization and preliminary toxicological studies. Food Chem Toxicol. 2007;45(11):2273–2278.
  • UNDP. Projet de descriptif de programme pour le bénin (2014–2018). Benin: UNDP; 2013.
  • Okudoh V, Trois C, Workneh T, et al. The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: a review. Renew Sustain Energy Rev. Nov. 2014;39:1035–1052.
  • Jekayinfa SO, Scholz V. Potential availability of energetically usable crop residues in Nigeria. Energy Sources Part Recov Util Environ Eff. Mar. 2009;31(8):687–697.
  • Okafor N. (1998). ‘An integrated bio-system for the disposal of cassava wastes. In Proceedings: Internet conference on integrated bio-systems in zero emissions applications.’ Available from: http://www.ias.unu.edu/proceedings/icbs.
  • Mai HNP. Integrated treatment of tapioca processing industrial wastewater based on environmental bio-technology [PhD-thesis]. Wageningen University; 2006.
  • Barana AC, Cereda MP. Cassava wastewater (manipueira) treatment using a two-phase anaerobic biodigestor. Food Sci Technol. Aug. 2000;20(2):183–186.
  • Cuzin N, Labat M. Reduction of cyanide levels during anaerobic digestion of cassava. Int J Food Sci Technol. Jun. 1992;27(3):329–336.
  • Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol. Aug. 2000;74(1):3–16.
  • Uzodinma EO, Ofoefule AU. Biogas production from blends of field grass (Panicum maximum) with some animal wastes. Int J Phys Sci. 2009;4(2):091–095.
  • Lareo L, Bressani R. Possible utilization of the water hyacinth in nutrition and industry. Food Nutr Bull. 1982;4(4):60–64.
  • ACED-BENIN. (2015). Jacinthe d’eau: Lutte par l’usage, Fevrier.
  • Rezania S, Ponraj M, Din MFM, et al. The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew Sustain Energy Rev. 2015;41:943–954.
  • Patil JH, AntonyRaj M, Shankar BB, et al. Anaerobic co-digestion of water hyacinth and sheep waste. Energy Procedia. 2014;52:572–578.
  • Almoustapha O, Millogo-Rasolodimby J. Production de biogaz et de compost à partir de eichhornia crassipes, (mart) solms-laub (pontederiaceae) pour un développement durable en Afrique sahélienne. La revue en sciences de l'environnement. avril 2008;8(8).
  • Adjahatode F, Kobede ASM, Daouda MM, et al. Valorisation de la jacinthe d’eau (Eichhornia crassipes) par la production de biocarburant : expérimentation. Déchets Sciences et Techniques. 2016;72. doi: 10.4267/dechets-sciences-techniques.3445
  • Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. 2009;27(4):409–416.
  • Holubar P, Zani L, Hager M, et al. Advanced controlling of anaerobic digestion by means of hierarchical neural networks. Water Res. 2002;36(10):2582–2588.
  • Cuzin N, Farinet JL, Segretain C, et al. Methanogenic fermentation of cassava peel using a pilot plug flow digester. Bioresour Technol. Jan. 1992;41(3):259–264.
  • Ofoefule AU, Uzodinma EO. Biogas production from blends of cassava (Manihot utilissima) peels with some animal wastes. Int J Phys Sci. Jul. 2009;4(7):398–402.
  • Ofoefule AU, Eme EL, Uzodinma EO, et al. Comparative study of the effect of chemical treatments on cassava (Manihot utilissima) peels for biogas production. Sci Res Essays. 2010;5(24):3808–3813.
  • Manilal VB, Narayanan CS, Balagopalan C. Anaerobic digestion of cassava starch factory effluent. World J Microbiol Biotechnol. Jun. 1990;6(2):149–154.
  • Adelekan BA, Bamgboye AI. Comparison of biogas productivity of cassava peels mixed in selected ratios with major livestock waste types. Afr J Agric Res. Jul. 2009;4(7):571–577.
  • Afnor N. ‘T 90–105,’ Qual. L’eau-Dos. Matières En Suspens. Par Centrifugation Assoc. Fr. Norm. Paris, 1997.
  • Šimkovic I, Csomorová K. Thermogravimetric analysis of agricultural residues: oxygen effect and environmental impact. J Appl Polym Sci. 2006;100(2):1318–1322.
  • Zhong W, Zhang Z, Luo Y, et al. Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresour Technol. 2012;114:281–286.
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356.
  • INRS. Fiche Toxicologique. INRS Ed INRS. 2008;10 and 168:1–2.
  • Angelidaki I, Sanders W. Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol. 2004;3(2):117–129.
  • Buswell AM, Mueller HF. Mechanism of methane fermentation. Ind Eng Chem. Mar. 1952;44(3):550–552.
  • Deublein D, Steinhauser A. Biogas from waste and renewable resources: an introduction. Weinheim: John Wiley & Sons; 2011.
  • Gerardi MH. The microbiology of anaerobic digesters. Vienna: John Wiley & Sons; 2003.
  • Amon T, Amon B, Kryvoruchko V, et al. Biogas production from maize and dairy cattle manure – influence of biomass composition on the methane yield. Agric Ecosyst Environ. Jan. 2007;118(1):173–182.
  • Sahito AR, Mahar RB, Brohi KM. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments. Mehran Univ Res J Eng Technol. 2014;33(1):65–76.
  • Prajapati SK, Malik A, Vijay VK. Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl Energy. 2014;114:790–797.
  • Angelidaki I, Alves M, Bolzonella D, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol. Mar. 2009;59(5):927–934.
  • Drosg B, Braun R, Bochmann G, et al. 3 - Analysis and characterisation of biogas feedstocks. In: A Wellinger, J Murphy, D Baxter, editor. The biogas handbook. London: Woodhead; 2013. p. 52–84.
  • Chudoba P, Capdeville B, Chudoba J. Explanation of biological meaning of the So/Xo ratio in batch cultivation. Water Sci Technol. 1992;26(3–4):743–751.
  • Raposo F, De la Rubia MA, Fernández-Cegrí V, et al. Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sustain Energy Rev. Jan. 2012;16(1):861–877.
  • Standard VDI. VDI 4630 fermentation of organic materials. Charact Substrate Sampl Collect Mater Data Ferment Tests. 2006;92.
  • Marchaim U. Biogas processes for sustainable development. New Delhi: Food & Agriculture Org.; 1992.
  • Malik A. Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int. 2007;33(1):122–138.
  • Gopal B. Water hyacinth. New Delhi: Elsevier Science; 1987.
  • Sánchez AS, Silva YL, Kalid RA, et al. Waste bio-refineries for the cassava starch industry: new trends and review of alternatives. Renew Sustain Energy Rev. Jun. 2017;73(Suppl. C):1265–1275.
  • Balagopalan C, Padmaja G, Nanda SK, et al. Cassava nutrition and toxicity. In: Balagopalan C, Padmaja G, Nanda SK, Moorthy SN, editor. Cassava in food, feed and industry. Boca Raton, FL: CRC Press; 1988. p. 13–36.
  • Eikmanns B, Thauer RK. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch Microbiol. 1984;138(4):365–370.
  • Kpata-Konan NE, Konan KF, Kouame MK, et al. Optimisation de la biométhanisation des effluents de manioc issus de la filière de fabrication de l’attiéké (semoule de manioc). Int J Biol ChemSci. Jan. 2011;5(6):2330–2342.
  • Wurster R. Experiences with anaerobic digestion of various cassava residues in Indonesia. Int Conf Biomass. 1985;3:501–505.
  • Segretain C, Bories A. Fermentative trends and cyanide effects during anaerobic digestion of cassava by-products. In: Biomass for energy and industry. 4th EC conference. Proceedings of the international conference. Orléans: Elsevier Applied Science Publishers; 1987. p. 808–813.
  • Murphy JD, Thamsiriroj T. 5 - Fundamental science and engineering of the anaerobic digestion process for biogas production. In: The biogas handbook. Cork: University College Cork; 2013. p. 104–130.
  • Tchobanoglous G. Integrated solid waste management engineering principles and management issues. New York (NY): McGraw Hill; 1993.
  • Li YY, Sasaki H, Yamashita K, et al. High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Sci Technol. 2002;45(12):143–150.
  • Cirne DG, Paloumet X, Björnsson L, et al. Anaerobic digestion of lipid-rich waste – effects of lipid concentration. Renew Energy. May 2007;32(6):965–975.
  • Boncz MA, Bezerra LP, Ide CN, et al. Optimisation of biogas production from anaerobic digestion of agro-industrial waste streams in Brazil. Water Sci Technol. Oct. 2008;58(8):1659–1664.
  • Raposo F, Banks CJ, Siegert I, et al. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. Jun. 2006;41(6):1444–1450.
  • Chen T-H, Hashimoto AG. Effects of pH and substrate:inoculum ratio on batch methane fermentation. Bioresour Technol. May 1996;56(2):179–186.
  • Speece RE. Anaerobic biotechnology for industrial wastewaters. Nashville (TN): Archae Press; 1996.
  • Horváth IS, Tabatabaei M, Karimi K, et al. Recent updates on biogas production-a review. Biofuel Res J. 2016;3:394–402.
  • Iacovidou E, Ohandja D-G, Voulvoulis N. Food waste co-digestion with sewage sludge–realising its potential in the UK. J Environ Manage. 2012;112:267–274.
  • Kashi S, Satari B, Lundin M, et al. Application of a mixture design to identify the effects of substrates ratios and interactions on anaerobic co-digestion of municipal sludge, grease trap waste, and meat processing waste. J Environ Chem Eng. 2017;5(6):6156–6164.
  • Luostarinen S, Luste S, Sillanpää M. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour Technol. 2009;100(1):79–85.
  • Edith K-KN, et al. Improving anaerobic biodigestion of manioc wastewater with human urine as co-substrate. Int J Innov Appl Stud. 2013;2(3):335–343.
  • Braun R, Wellinger A. Potential of co-digestion. IEA bioenergy report under Task37-energy from biogas and land fill Gas; 2003.
  • Vorsters A. Rentabilité d’un biogaz de type chinois au Bénin. TROPI Cultura. 1994;12(1):27–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.