159
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis of NiMo/La-Al2O3 powders for efficient catalytic transesterification of triglyceride with the high yield of 95.2%

, , , , , , & show all
Pages 1634-1641 | Received 26 May 2019, Accepted 28 Sep 2019, Published online: 11 Oct 2019

References

  • Hu N, Kong Z, He L, et al. Effective transesterification of triglyceride with sulphonated modified SBA-15 (SBA-15-SO3H): screening, process and mechanism. Inorganica Chim Acta. 2018;482:846–853. doi: 10.1016/j.ica.2018.07.032
  • Mansir N, Taufiq-Yap YH, Rashid U, et al. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energ Convers Manage. 2017;141:171–182. doi: 10.1016/j.enconman.2016.07.037
  • Teo SH, Islam A, Chan ES, et al. Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles. J Clean Prod. 2019;208:816–826. doi: 10.1016/j.jclepro.2018.10.107
  • Gülüm M, Yesilyurt MK, Bilgin A. The performance assessment of cubic spline interpolation and response surface methodology in the mathematical modeling to optimize biodiesel production from waste cooking oil. Fuel. 2019;255:1–14. doi: 10.1016/j.fuel.2019.115778
  • Teo SH, Islam A, Yusaf T, et al. Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst. Energy. 2014;78:63–71. doi: 10.1016/j.energy.2014.07.045
  • Teo SH, Taufiq-Yap YH, Rashid U, et al. Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas. RSC Adv. 2015;5:4266–4276. doi: 10.1039/C4RA11936C
  • Kumar D, Singh B, Banerjee A, et al. Cement wastes as transesterification catalysts for the production of biodiesel from Karanja oil. J Clean Prod. 2018;183:26–34. doi: 10.1016/j.jclepro.2018.02.122
  • Jung JM, Oh JI, Park YK, et al. Biodiesel synthesis from fish waste via thermally-induced transesterification using clay as porous material. J Hazard Mater. 2019;371:27–32. doi: 10.1016/j.jhazmat.2019.02.109
  • Kumar SAA, Sakthinathan G, Vignesh R, et al. Optimized transesterification reaction for efficient biodiesel production using Indian oil sardine fish as feedstock. Fuel. 2019;253:921–929. doi: 10.1016/j.fuel.2019.04.172
  • Tiwari A, Rajesh VM, Yadav S. Biodiesel production in micro-reactors: a review. Energy Sustain Dev. 2018;43:143–161. doi: 10.1016/j.esd.2018.01.002
  • Ahmad T, Danish M, Kale P, et al. Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations. Renew Energ. 2019;139:1272–1280. doi: 10.1016/j.renene.2019.03.036
  • Jacobson K, Gopinath R, Meher LC, et al. Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B Environ. 2008;85:86–91. doi: 10.1016/j.apcatb.2008.07.005
  • Tian Y, Wang F, Xie L-F, et al. Lewis acid-catalyzed in situ transesterification/esterification of tigernut in sub/supercritical ethanol: an optimization study. Fuel. 2019;245:96–104. doi: 10.1016/j.fuel.2019.02.038
  • Vávra A, Hájek M, Skopal F. Acceleration and simplification of separation by addition of inorganic acid in biodiesel production. J Clean Prod. 2018;192:390–395. doi: 10.1016/j.jclepro.2018.04.242
  • Shubhangi S, Nigade SDJ, Chandgude AK. Development of transesterification system with acid and base homogeneous catalysts for mangifera indica seed oil to Mangifera Indica methyl ester (MOME biodiesel). Int J Energ Power Eng. 2015;4:48–53.
  • Luna MF, Martínez EC. Run-to-run optimization of biodiesel production using probabilistic tendency models: a simulation study. Can J Chem Eng. 2015;93:1613–1623. doi: 10.1002/cjce.22249
  • Sandesh S, Kristachar PKR, Manjunathan P, et al. Synthesis of biodiesel and acetins by transesterification reactions using novel CaSn(OH)6 heterogeneous base catalyst. Appl Catal A. 2016;523:1–11. doi: 10.1016/j.apcata.2016.05.006
  • Chingakham C, Tiwary C, Sajith V. Waste animal bone as a novel layered heterogeneous catalyst for the transesterification of biodiesel. Catal Letters. 2019;149:1100–1110. doi: 10.1007/s10562-019-02696-9
  • Sanchezsanchez M, Navarro R, Fierro J. Ethanol steam reforming over Ni/La–Al2O3 catalysts: influence of lanthanum loading. Catal Today. 2007;129:336–345. doi: 10.1016/j.cattod.2006.10.013
  • Pratiwi VI, Ramadhani F, Wahyuni S, et al. A catalytic test of Mn(II) and Ni(II) grafted on modified mesoporous silica in transesterification of vegetable oil. J Chem Pharm Res. 2015;7(9S):14–16.
  • Xie W, Peng H, Chen L. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl Catal, A. 2006;300:67–74. doi: 10.1016/j.apcata.2005.10.048
  • Pasupulety N, Gunda K, Liu Y, et al. Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts. Appl Catal, A. 2013;452:189–202. doi: 10.1016/j.apcata.2012.10.006
  • Fatsikostas AN, Kondarides DI, Verykios XE. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catal Today. 2002;75:145–155. doi: 10.1016/S0920-5861(02)00057-3
  • Liguras DK, Kondarides DI, Verykios XE. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl Catal B Environ. 2003;43:345–354. doi: 10.1016/S0926-3373(02)00327-2
  • Yan S, Kim M, Salley SO, et al. Oil transesterification over calcium oxides modified with lanthanum. Appl Catal, A. 2009;360:163–170. doi: 10.1016/j.apcata.2009.03.015
  • Guan Q, Hua S, Jing L, et al. Biodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: process, mechanism and application. Appl Energy. 2016;164:380–386. doi: 10.1016/j.apenergy.2015.11.029
  • Teo SH, Islam A, Masoumi HRF, et al. Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus. Renew Energ. 2017;111:892–905. doi: 10.1016/j.renene.2017.04.039
  • Cejka J. Organized mesoporous alumina: synthesis, structure and potential in catalysis. Appl Catal A Gen. 2003;254:327–338. doi: 10.1016/S0926-860X(03)00478-2
  • Liu J, Liu C, Zhou G, et al. Hydrotreatment of Jatropha oil over NiMoLa/Al2O3 catalyst. Green Chem. 2012;14:2499–2505. doi: 10.1039/c2gc35450k
  • Liu SXF, Cao L, Chi Y, et al. A Comparison of NiMo/Al2O3 catalysts prepared by impregnation and coprecipitation methods for hydrodesulfurization of dibenzothiophene. J Phys Chem C. 2007;111:7396–7402. doi: 10.1021/jp068482+
  • Wang Y, Xiong G, Liu X, et al. Structure and reducibility of NiO-MoO3/γ-Al2O3 catalysts: effects of loading and molar ratio. J Phys Chem C. 2008;112:17265–17271. doi: 10.1021/jp800182j
  • Ogawa Y, Toba M, Yoshimura Y. Effect of lanthanum promotion on the structural and catalytic properties of nickel-molybdenum/alumina catalysts. Appl Catal, A. 2003;246:213–225. doi: 10.1016/S0926-860X(03)00049-8
  • Patel RL, Sankhavara CD. Biodiesel production from Karanja oil and its use in diesel engine: a review. Renewable Sustainable Energy Rev. 2017;71:464–474. doi: 10.1016/j.rser.2016.12.075
  • Borah MJ, Devi A, Borah R, et al. Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil. Renew Energ. 2019;133:512–519. doi: 10.1016/j.renene.2018.10.069
  • Malhotra R, Ali A. 5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil. Renew Energ. 2019;133:606–619. doi: 10.1016/j.renene.2018.10.055
  • Marwaha A, Rosha P, Mohapatra SK, et al. Waste materials as potential catalysts for biodiesel production: current state and future scope. Fuel Process Technol. 2018;181:175–186. doi: 10.1016/j.fuproc.2018.09.011
  • Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy. 2010;87:1083–1095. doi: 10.1016/j.apenergy.2009.10.006
  • Freedman B, Pryde EH, Mounts TL. Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc. 1984;61:1638–1643. doi: 10.1007/BF02541649

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.