148
Views
5
CrossRef citations to date
0
Altmetric
Articles

Biological attenuation of arsenic and nitrate in a suspended growth denitrifying-sulphidogenic bioreactor and stability check of arsenic-laden biosolids

&
Pages 1723-1733 | Received 23 Mar 2018, Accepted 08 Oct 2019, Published online: 31 Oct 2019

References

  • Rahman S, Kim K-H, Saha SK, et al. Review of remediation techniques for arsenic (As) contamination: A novel approach utilizing bio-organisms. J Environ Manage. 2014;134:175–185. doi: 10.1016/j.jenvman.2013.12.027
  • Pal P, Sen M., Manna A, Pal J, Pal P, Roy S, Roy P, et al. Contamination of groundwater by arsenic: a review of occurrence, causes, impacts, remedies and membrane-based purification. J Integr Environ Sci. 2009;6(4), 295–316. doi: 10.1080/19438150903185077
  • Bahmani P, Maleki A, Rezaee R, Khamforosh M, Yetilmezsoy K, Athar SD, Gharibi F, et al. Simultaneous removal of arsenate and nitrate from aqueous solutions using micellar-enhanced ultrafiltration process. J Water Process Eng. 2019;27, 24–31. doi: 10.1016/j.jwpe.2018.11.010
  • Venkataraman K, Uddameri V. Modeling simultaneous exceedance of drinking-water standards of arsenic and nitrate in the Southern Ogallala aquifer using multinomial logistic regression. J Hydrol. 2012;458–459(0):16–27. doi: 10.1016/j.jhydrol.2012.06.028
  • Mayorga P, Moyano A, Anawar HM, et al. Temporal variation of arsenic and nitrate content in groundwater of the Duero River Basin (Spain). Phys Chem Earth A/B/C. 2013;58–60(0):22–27. doi: 10.1016/j.pce.2013.04.001
  • Çiftçi TD, Yayayürük O, Henden E. Study of arsenic (III) and arsenic (V) removal from waters using ferric hydroxide supported on silica gel prepared at low pH. Environ Technol. 2011;32(3):341–351. doi: 10.1080/09593330.2010.499546
  • Sutherland D, Swash P, Macqueen A, et al. A field based evaluation of household arsenic removal technologies for the treatment of drinking water. Environ Technol. 2002;23(12):1385–1404. doi: 10.1080/09593332508618444
  • Darbi A, Viraraghavan T, Butler R, et al. Pilot-scale evaluation of select nitrate removal technologies. J Environ Sci Health A. 2003;38(9):1703–1715. doi: 10.1081/ESE-120022873
  • Aslan S, Cakici H. Biological denitrification of drinking water in a slow sand filter. J Hazard Mater. 2007;148(1):253–258. doi: 10.1016/j.jhazmat.2007.02.012
  • Shakya AK, Ghosh PK. Simultaneous removal of arsenic, iron and nitrate in an attached growth bioreactor to meet drinking water standards: Importance of sulphate and empty bed contact time. J Clean Prod. 2018; 186:1011–1020. doi: 10.1016/j.jclepro.2018.03.176
  • Kamde K, Dahake R, Pandey R, et al. Integrated bio-oxidation and adsorptive filtration reactor for removal of arsenic from wastewater. Environ Technol. 2019;40(10):1337–1348. doi: 10.1080/09593330.2017.1422547
  • Shakya AK, Ghosh PK. Concurrent removal of nitrate, arsenic and iron from simulated and real-life groundwater to meet drinking water standards: effects of operational and environmental parameters. J Environ Manage. 2019; 235, 9–18. doi: 10.1016/j.jenvman.2019.01.020
  • Altun M, Sahinkaya E, Durukan I, et al. Arsenic removal in a sulfidogenic fixed-bed column bioreactor. J Hazard Mater. 2014;269(0):31–37. doi: 10.1016/j.jhazmat.2013.11.047
  • Upadhyaya G, Jackson J, Clancy TM, et al. Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system. Water Res. 2010;44(17):4958–4969. doi: 10.1016/j.watres.2010.07.037
  • Snyder KV, Webster TM, Upadhyaya G, et al. Vinegar-amended anaerobic biosand filter for the removal of arsenic and nitrate from groundwater. J Environ Manage. 2016;171:21–28. doi: 10.1016/j.jenvman.2016.02.001
  • Li B, Pan X, Zhang D, et al. Anaerobic nitrate reduction with oxidation of Fe(II) by Citrobacter Freundii strain PXL1 – a potential candidate for simultaneous removal of As and nitrate from groundwater. Ecol Eng. 2015;77(0):196–201. doi: 10.1016/j.ecoleng.2015.01.027
  • Kleerebezem R, van Loosdrecht MCM. Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol. 2007;18(3):207–212. doi: 10.1016/j.copbio.2007.05.001
  • Amburgey JE, Amirtharajah A. Strategic filter backwashing techniques and resulting particle passage. J Environ Eng. 2005;131(4):535–547. doi: 10.1061/(ASCE)0733-9372(2005)131:4(535)
  • CGWB. Ground water quality in shallow aquifers of India. Central Ground Water Board, Ministry of Water Resources, Govt of India. 2010.
  • Shakya AK, Rajput P, Ghosh PK, et al. Investigation on stability and leaching characteristics of mixtures of biogenic arsenosulphides and iron sulphides formed under reduced conditions. J Hazard Mater. 2018;353, 320–328. doi: 10.1016/j.jhazmat.2018.04.031
  • Ghosh A, Pakshirajan K, Ghosh PK, Sahoo NK, et al. Perchlorate degradation using an indigenous microbial consortium predominantly Burkholderia sp. J Hazard Mater. 2011;187(1–3), 133–139. doi: 10.1016/j.jhazmat.2010.12.130
  • Brahmacharimayum B, and Ghosh PK. Sulfate bioreduction and elemental sulfur formation in a packed bed reactor. J Environ Chem Eng. 2014;2(3): 1287–1293. doi: 10.1016/j.jece.2014.05.018
  • APHA. Standard methods for the examination of water & wastewater. 21st ed. American Public Health Association, Washington DC. 2005.
  • Cord-Ruwisch R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods. 1985;4(1): 33–36. doi: 10.1016/0167-7012(85)90005-3
  • USEPA. Test methods for evaluating solid waste, physical/chemical methods, 3rd edition; SW-846, method 1311. U S Government Printing Office: Washington, DC. 1992.
  • USEPA, SW-846 Test Method 9045D: Soil and Waste pH. 2004.
  • Hooper K, Iskander M, Sivia G, et al. Toxicity characteristic leaching procedure fails to extract oxoanion-forming elements that are extracted by municipal solid waste leachates. Environ Sci Technol. 1998;32(23):3825–3830. doi: 10.1021/es980151q
  • Teclu D, Tivchev G, Laing M, et al. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res. 2008;42(19):4885–4893. doi: 10.1016/j.watres.2008.09.010
  • Seki H, Suzuki A, Maruyama H. Biosorption of chromium (VI) and arsenic (V) onto methylated yeast biomass. J Colloid Interface Sci. 2005;281(2):261–266. doi: 10.1016/j.jcis.2004.08.167
  • Kalyuzhnyi S, Fedorovich V. Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresour Technol. 1998;65(3): 227–242. doi: 10.1016/S0960-8524(98)00019-4
  • Henke, K., 2009. Arsenic: environmental chemistry, health threats and waste treatment, Ltd. John Wiley & Sons, Chichester, UK. doi:10.1002/9780470741122.ch2.
  • Schmidt CS, Richardson DJ, Baggs EM, Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils. Soil Biol Biochem. 2011;43(7):1607–1611. doi: 10.1016/j.soilbio.2011.02.015
  • Rivett MO, Stephen RB, Philip M, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res. 2008; 42(16):4215–4232. doi: 10.1016/j.watres.2008.07.020
  • Bharati B, Kumar GP. A study on efficiency of five different carbon sources on sulfate reduction. J Environ Res Dev. 2012;7:416–420.
  • Hao OJ, Chen JM, Huang L, et al. Sulfate-reducing bacteria. Crit Rev Environ Sci Technol. 1996;26(2):155–187. doi: 10.1080/10643389609388489
  • Liamleam W, Annachhatre AP. Electron donors for biological sulfate reduction. Biotechnol Adv. 2007;25(5):452–463. doi: 10.1016/j.biotechadv.2007.05.002
  • USEPA. Acid digestion of sediments, sludges and soils. Available from: wwwepagov/osw/hazard/testmethods/sw846/pdfs/3050bpdf. 1996;Methaod 3050B.
  • Lengke MF, Tempel RN. Kinetic rates of amorphous As2S3 oxidation at 25 to 40°C and initial pH of 7.3 to 9.4. Geochim Cosmochim Acta. 2001;65(14):2241–2255. doi: 10.1016/S0016-7037(01)00592-0
  • Lengke MF, Tempel RN. Natural realgar and amorphous AsS oxidation kinetics. Geochim Cosmochim Acta. 2003;67(5):859–871. doi: 10.1016/S0016-7037(02)01227-9
  • Lengke MF, Sanpawanitchakit C, Tempel RN. The oxidation and dissolution of arsenic-bearing sulfides. Can Mineral. 2009;47(3):593–613. doi: 10.3749/canmin.47.3.593
  • Suess E, Planer-Friedrich B. Thioarsenate formation upon dissolution of orpiment and arsenopyrite. Chemosphere. 2012;89(11):1390–1398. doi: 10.1016/j.chemosphere.2012.05.109
  • USEPA. Hazardous waste management system; land disposal restriction. Appendix I to Part 268: Toxicity Characteristics Leaching Procedure (TCLP). 1986:40643–40654.
  • EA. Guidance on whether wastes containing metals or metal compounds are regulated under the Hazaradous Waste Act, 2nd ed. Information Paper, no. 5, Department of Environment and Heritage, Australia,. Environment Australia (EA). 2002:1–22.
  • Shakya AK, Ghosh PK. Stability against arsenic leaching from biogenic arsenosulphides generated under reduced environment. J Clean Prod. 2019; 208, 1557–1562. doi: 10.1016/j.jclepro.2018.10.187

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.