120
Views
3
CrossRef citations to date
0
Altmetric
Articles

Hexavalent Cr ion adsorption and desorption behaviour of expanded poly(tetrafluoro)ethylene films grafted with 2-(dimethylamino)ethyl methacrylate

, , , , &
Pages 1885-1898 | Received 18 May 2019, Accepted 17 Sep 2019, Published online: 03 Nov 2019

References

  • Hossini H, Makhdoumi P, Mohammadi-Moghadam F, et al. A review of toxicological, environmental and health effects of chromium from aqueous medium: available removal techniques. Acta Medica Mediterr. 2016;32:1463–1469.
  • Mishra S, Bharagava RN. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C. 2016;34:1–32. Bernard Nisol. doi: 10.1080/10590501.2015.1096883
  • Owlad M, Aroua MK, Daud WAW, et al. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water Air Soil Pollut. 2009;200:59–77. doi: 10.1007/s11270-008-9893-7
  • Pakade V, Chimuka L. Polymeric sorbents for removal of Cr(VI) from environmental samples. Pure Appl Chem. 2013;85:2145–2160. doi: 10.1351/pac-con-12-11-17
  • Bello OS, Atoyebi OM, Adegoke KA, et al. Removal of toxicant chromium (VI) from aqueous solution using different adsorbents. J Chem Soc Pak. 2015;37:190–206.
  • Carolin CF, Kumar PS, Saravanan A, et al. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J Environ Chem Eng. 2017;5:2782–2799. doi: 10.1016/j.jece.2017.05.029
  • Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156:2–10. doi: 10.1016/j.cej.2009.09.013
  • Satapathy D, Natarajan GS, Patil SJ. Adsorption characteristics of chromium(VI) on granular activated carbon. Carbon N Y. 2005;52:35–44.
  • Labied R, Benturki O, Hamitouche AE, et al. Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study. Adsorption Sci Technol. 2018;36:1066–1099. doi: 10.1177/0263617417750739
  • Yin W, Guo Z, Zhao C, et al. Removal of Cr(VI) from aqueous media by biochar derived from mixture biomass precursors of Acorus calamus Linn. and feather waste. J Anal Appl Pyrolysis. 2019;140:86–92. doi: 10.1016/j.jaap.2019.04.024
  • Hlihor RM, Figueiredo H, Tavares T, et al. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): batch and column studies. Process Saf Environ Prot. 2017;108:44–56. doi: 10.1016/j.psep.2016.06.016
  • Rangabhashiyam S, Selvaraju N. Evaluation of the biosorption potential of a novel Caryata urens inflorescence waste biomass for the removal of hexavalent chromium from aqueous solutions. J Taiwan Inst Chem Eng. 2015;47:59–70. doi: 10.1016/j.jtice.2014.09.034
  • Holda A, Mlynarczykowska A. Use of dead and living fungal biomass for removal of hexavalent chromium. Physicochem Probl Miner Process. 2016;52:551–563.
  • Elwakeel KZ. Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan beads. Desalination. 2010;250:105–112. doi: 10.1016/j.desal.2009.02.063
  • Medeiros Borsagli FGL, Mansur AAP, Chagas P, et al. O-carboxymethyl functionalization of chitosan: complexation and adsorption of Cd(II) and Cr(VI) as heavy metal pollutant ions. React Funct Polym. 2015;97:37–47. doi: 10.1016/j.reactfunctpolym.2015.10.005
  • Sharma G, Naushad M, Al-Muhtaseb AH, et al. Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biolog Macromol. 2017;95:484–493. doi: 10.1016/j.ijbiomac.2016.11.072
  • Zheng C, Zheng H, Wang Y, et al. Synthesis of novel modified magnetic chitosan particles and their adsorption performance toward Cr(VI). Bioresour Technol. 2018;267:1–8. doi: 10.1016/j.biortech.2018.06.113
  • Kučić D, Simonič M, Furač L. Batch adsorption of Cr(VI) ions on zeolite and agroindustrial waste. Chem Biochem Eng Q. 2017;31:497–507. doi: 10.15255/CABEQ.2017.1100
  • Szala B, Bajda T, Jeleń A. Removal of chromium(VI) from aqueous solutions using zeolites modified with HDTMA and ODTMA surfactants. Clay Miner. 2015;50:103–115. doi: 10.1180/claymin.2015.050.1.10
  • Pan Y, Cai P, Farmahini-Farahani M, et al. Amino-functionalized alkaline clay with cationic star-shaped polymer as adsorbents for removal of Cr(VI) in aqueous solution. Appl Surf Sci. 2016;385:333–340. doi: 10.1016/j.apsusc.2016.05.112
  • Ji M, Su X, Zhao Y, et al. Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: optimization, selectivity, and mechanism. Appl Surf Sci. 2015;344:128–136. doi: 10.1016/j.apsusc.2015.03.006
  • Asamoto H, Kimura Y, Ishiguro Y, et al. Use of polyethylene films photografted with 2-(dimethylamino)ethyl methacrylate as a potential adsorbent for removal of chromium (VI) from aqueous medium. J Appl Polym Sci. 2016;133. DOI:10/1002/APP43360 doi: 10.1002/app.43360
  • Yamada K, Ishiguro Y, Kimura Y, et al. Two-step grafting of 2-hydroxyethyl methacrylate (HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto a polyethylene plate for enhancement of Cr(VI) ion adsorption. Environ Technol. 2019;40:855–869. doi: 10.1080/09593330.2017.1409274
  • Hu X, Wang JS, Liu YG, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J Hazard Mater. 2011;185:306–314. doi: 10.1016/j.jhazmat.2010.09.034
  • El-Reash YGA, Otto M, Kenawy IM, et al. Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin. J Biol Macromol. 2011;49:513–522. doi: 10.1016/j.ijbiomac.2011.06.001
  • Li H, Bi S, Liu L, et al. Separation and accumulation of Cu(II), Zn(II) and Cr(VI) from aqueous solution by magnetic chitosan modified with diethylenetriamine. Desalination. 2011;278:397–404. doi: 10.1016/j.desal.2011.05.056
  • Medjahed K, Mansri A, Tennouga L, et al. Poly(acrylamide (AM)-co-4-vinylpyridine (4-VP) quaternized by alkylbromides for removal of chromium (VI). Mor J Chem. 2015;3:122–126.
  • Yiğitoğlu M, Arslan M. Selective removal of Cr(VI) ions from aqueous solutions including Cr(VI), Cu(II), and Cd(II) ions by 4-vinyl pyridine/2-hydroxy-ethylmethacrylate monomer mixture grafted poly(ethylene terephthalate) fiber. J Hazard Mater. 2009;166:435–444. doi: 10.1016/j.jhazmat.2008.11.075
  • Neagu V, Mikhalovsky S. Removal of hexavalent chromium by new quaternized crosslinked poly(4-vinylpyridines). J Hazard Mater. 2010;183:533–540. doi: 10.1016/j.jhazmat.2010.07.057
  • Tavengwa NT, Cukrowska E, Chimuka L. Synthesis, adsorption and selectivity studies of N-propyl quaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta. 2013;116:105–112. doi: 10.1016/j.talanta.2013.07.034
  • Anirudhan TS, Rijith S, Das Bringle C. Iron(III) complex of an amino-functionalized poly(acrylamide)-grafted lignocellulosic residue as a potential adsorbent for the removal of chromium(VI) from water and industry effluents. J Polym Res. 2010;17:289–299. doi: 10.1007/s10965-009-9316-5
  • Arslan M. Prepration and use of amine-functionalized glycidyl methacrylate-g-poly(ethylene terephthalate) fibers for removal of chromium(VI) from aqueous solution. Fibers Polym. 2019;11:325–330. doi: 10.1007/s12221-010-0325-0
  • Maksin DD, Nastasović AB, Milutinović-Nikoli AD, et al. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers. J Hazard Mater. 2012: 209–210. 99–110.
  • Li Y, Zhu H, Zhang C, et al. PEI-grafted magnetic cellulose for Cr(VI) removal from aqueous solution. Cellulose. 2018;25:4757–4769. doi: 10.1007/s10570-018-1868-2
  • Sun X, Yang L, Xing H, et al. Synthesis of polyethyleneimine-functionalized poly(glycidyl methacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties. Chem Eng J. 2013;234:338–345. doi: 10.1016/j.cej.2013.08.082
  • Chang JH, Kim J, Lee H. PNIPAAm grafted amino-functionalized mesoporous silica for thermo-responsive chromium elimination. Appl Surf Sci. 2017;424:115–121. doi: 10.1016/j.apsusc.2017.01.168
  • Khonsha I, Heidarinasab A, Moniri E, et al. Removal of hexavalent chromium in industrial wastewater using poly[allylamine-(N,N-dimethylacrylamide)] grafted onto magnetic nanoparticles. Adv Polym Technol. 2017;36:371–377. doi: 10.1002/adv.21618
  • Hayashi N, Chen J, Seko N. Nitrogen-containing fabric adsorbents prepared by radiation grafting for removal of chromium from wastewater. Polymers (Basel). 2018;10. doi: 10.3390/polym10070744
  • Kavakli C, Kavakli PA, Turan BD, et al. Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As(V) adsorption. Radiat Phys Chem. 2014;102:84–95. doi: 10.1016/j.radphyschem.2014.04.011
  • Kavakli C, Barsbay M, Tilki S, et al. Activation of polyethylene/pplypropylene nonwoven fibric by radiation-induced grafting for the removal of Cr(VI) from aqueous solutions. Water Air Soil Pollut. 2016;227. DOI:10.3390/polym10070744 doi: 10.1007/s11270-016-3184-5
  • Kavakli PA, Kavakli C, Noriaki S, et al. Radiation induced emulsion graft polymerization of 4-vinylpyridine onto PE/PP nonwoven fabric for As(V) adsorption. Radiat Phys Chem. 2016;127:13–20. doi: 10.1016/j.radphyschem.2016.05.020
  • Yamada K, Takagi C, Hirata M. Adsorption and desorption properties of expanded poly(tetrafluoroethylene) films grafted with DMAEMA and their regeneration. J Appl Polym Sci. 2007;104:3301–3308. doi: 10.1002/app.26131
  • Yamada K, Gondo T, Hirata M. Application of DMAEMA-grafted expanded PTFE films to positively charged ultrafiltration membranes and their electrostatic sieve separation properties. J Appl Polym Sci. 2001;81:1595–1604. doi: 10.1002/app.1590
  • Yamada K, Tatekawa S, Hirata M. Polyethylene film gels prepared by photograftings of hydrophilic monomers. J Colloid Interface Sci. 1994;162:144–150. doi: 10.1006/jcis.1994.1019
  • Yamada K, Tachi M, Kimura Y. Improvement of adhesive strength of poly(tetrafluoroethylene) plates through oxygen plasma treatment and subsequent photografting of methacrylic acid. Int J Mater Sci Applicat. 2018;7:18–27.
  • Yamada K, Sato K, M H. Uphill transport of organic electrolytes using polyethylene films photografted with 2-(dimethylamino)ethyl methacrylate. J Mater Sci. 1999;34:1081–1091. doi: 10.1023/A:1004508431202
  • Mikhailova SS, Mykhaylyk OM. Dorfman AM at al. XPS study of finely dispersed iron powders modified by radiation-grafted acrylamide. Surf Interface Anal. 2000;29:519–523. doi: 10.1002/1096-9918(200008)29:8<519::AID-SIA896>3.0.CO;2-8
  • Khot A, Bailey A, Debies T, et al. XPS studies of poly(acrylic acid) grafted onto UV photo-oxidized polystyrene surfaces. J Adhes Sci Technol. 2012;26:2627–2639. doi: 10.1080/01694243.2012.691037
  • Song W, Gao B, Zhang T, et al. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites. Bioresour Technol. 2015;190:550–557. doi: 10.1016/j.biortech.2015.01.103
  • Li Z, Li T, An L, et al. Highly efficient chromium(VI) adsorption with nanofibrous filter paper prepared through electrospinning chitosan/ polymethylmethacrylate composite. Carbohydr Polym. 2016;137:119–126. doi: 10.1016/j.carbpol.2015.10.059
  • Mahmood-Hassan M, Yasin M, Yousra M, et al. Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust. Environ. Sci Pollut Res. 2018;25:12570–12578. doi: 10.1007/s11356-018-1300-3
  • Li G, He G, Zheng Y, et al. Surface photografting initiated by benzophenone in water and mixed solvents containing water and ethanol. J Appl Polym Sci. 2012;123:1951–1959. doi: 10.1002/app.34683
  • Sangermano M, Razza N. Light induced grafting-from strategies as powerful tool for surface modification. Express Polym Lett. 2019;13:135–145. doi: 10.3144/expresspolymlett.2019.13
  • Turmanova S, Minchev M, Vassilev K, et al. Surface grafting polymerization of vinyl monomers on poly(tetrafluoroethylene) films by plasma treatment. J Polym Res. 2008;15:309–318. doi: 10.1007/s10965-007-9172-0
  • Khelifa F, Ershow S, Habibi Y, et al. Free-radical-induced grafting from plasma polymer surfaces. Chem Rev. 2016;116:3975–4005. doi: 10.1021/acs.chemrev.5b00634
  • Hidzir NM, Hill DJT, Taran E, et al. Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes. Polymer (Guildf). 2013;54:6536–6546. doi: 10.1016/j.polymer.2013.10.003
  • Shi S, Zhou Y, Lu X, et al. Plasma-initiated DT graft polymerization of acrylic acid on surface of porous polypropylene membrane for pore size control. Plasma Chem Plasma Process. 2014;34:1257–1269. doi: 10.1007/s11090-014-9572-y
  • Vandencasteele N, Reniers F. Plasma-modified polymer surfaces: characterization using XPS. J Electron Spectrosc Relat Phenom. 2010: 178–179. 394–408.
  • Ma H, Zhang Y, Zhang L, et al. Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal. Radiat. Phys. Chem. 2016;124:159–163. doi: 10.1016/j.radphyschem.2015.11.002
  • Kondratenko NA, Sherstyuk VF. Spectroscopic characteristics of Cr (VI) oxyanions in water solutions. Theor Exp Chem. 1987;22:656–662. doi: 10.1007/BF00524059
  • Holyer RH, Baldwin HW. Oxygen exchange between chromium(VI) oxyanions and water. Can J Chem. 1967;45:413–419. doi: 10.1139/v67-072
  • Yavuz AG, Dincturk-Atalay E, Uygun A, et al. A comparison study of adsorption of Cr(VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites. Desalination. 2011;279:325–331. doi: 10.1016/j.desal.2011.06.034
  • Sahiner N, Demirci S, Sahiner M, et al. Application of superporous magnetic cationic cryogels for persistent chromate (toxic chromate and dichromate) uptake from aqueous environments. J Appl Polym Sci. 2016;133; DOI:10.1002/app.43438 doi: 10.1002/app.44137
  • Behzad SK, Amini MM, Balati A, et al. Adsorption and determination of Cr(VI) in environmental samples using triazine-modified Fe3O4 nanoparticles: kinetics and equilibrium modeling. Sol-Gel Sci Technol. 2016;78:446–456. doi: 10.1007/s10971-016-3965-8
  • Sun X, Yang L, Dong T, et al. Removal of Cr(VI) from aqueous solution using amino-modified Fe3O4-SiO2-chitosan magnetic microspheres with high acid resistance and adsorption capacity. J Appl Polym Sci. 2016;133; doi: 10.1002/app.43078
  • Mansri A, Benabadji KI, Desbrières J, et al. Chromium removal using modified poly(4-vinylpyridinium) bentonite salts. Desalination. 2009;245:95–107. doi: 10.1016/j.desal.2008.06.012
  • Kara A, Demirbel E. Kinetic, isotherm and thermodynamic analysis on adsorption of Cr(VI) ions from aqueous solutions by synthesis and characterization of magnetic-poly(divinylbenzene-vinylimidazole) microbeads. Water Air Soil Pollut. 2012;223:2387–2403. doi: 10.1007/s11270-011-1032-1
  • Bayramoğlu G, Arica MY. Adsorption of Cr(VI) onto PEI immobilized acrylate-based magnetic beads: isotherms, kinetics and thermodynamics study. Chem Eng J. 2008;139:20–28. doi: 10.1016/j.cej.2007.07.068
  • Li L, Li Y, Cao L, et al. Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites. Carbohydr Polym. 2015;125:206–213. doi: 10.1016/j.carbpol.2015.02.037
  • Wang Z, Ye C, Wang X, et al. Adsorption and desorption characteristics of imidazole-modified silica for chromium(VI). Appl Surf Sci. 2013;287:232–141. doi: 10.1016/j.apsusc.2013.09.133
  • Anirudhan TS, Nima J, Divya PL. Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups. Appl Surf Sci. 2013;279:441–449. doi: 10.1016/j.apsusc.2013.04.134

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.