269
Views
6
CrossRef citations to date
0
Altmetric
Articles

Preparation of spherical filler-like ZnFe2O4/Bi2MoO6 surrounded by nanosheets and its photocatalytic applications

, , ORCID Icon, , & ORCID Icon
Pages 2077-2084 | Received 12 Jun 2019, Accepted 23 Oct 2019, Published online: 28 Nov 2019

References

  • Dozzi M, Selli E. Specific facets-dominated anatase TiO2: fluorine-mediated synthesis and photoactivity. Catalysts. 2013;3:455–485. doi: 10.3390/catal3020455
  • Ma Y, Wang X, Jia Y, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev. 2014;114:9987–10043. doi: 10.1021/cr500008u
  • Khan MA, Xia M, Mutahir S, et al. Encapsulating nano rods of copper–biphenylamines framework on gC3N4 photocatalysts for visible-light-driven organic dyes degradation: promoting charge separation efficiency. Catal Sci Technol. 2017;7:3017–3026. doi: 10.1039/C7CY00420F
  • Khan MA, Mutahir S, Wang F, et al. Synthesis of environmentally encouraged, highly robust pollutants reduction 3-D system consisting of Ag/gC3N4 and Cu-complex to degrade refractory pollutants. J Photochem Photobiol A. 2018;364:826–836. doi: 10.1016/j.jphotochem.2018.04.035
  • Zada A, Qu Y, Ali S, et al. Improved visible-light activities for degrading pollutants on TiO2/g-C3N4 nanocomposites by decorating SPR Au nanoparticles and 2, 4-dichlorophenol decomposition path. J Hazard Mater. 2018;342:715–723. doi: 10.1016/j.jhazmat.2017.09.005
  • Habibi-Yangjeh A, Mousavi M. Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: novel magnetic photocatalysts with drastically enhanced performance under visible-light. Adv Powder Technol. 2018;29:1379–1392. doi: 10.1016/j.apt.2018.02.034
  • Kumagai H, Sahara G, Maeda K, et al. Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru (ii)–Re (i) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation. Chem Sci. 2017;8:4242–4249. doi: 10.1039/C7SC00940B
  • Mousavi M, Habibi-Yangjeh A. Integration of NiWO4 and Fe3O4 with graphitic carbon nitride to fabricate novel magnetically recoverable visible-light-driven photocatalysts. J Mater Sci. 2018;53:9046–9063. doi: 10.1007/s10853-018-2213-8
  • Khalid NR, Majid A, Tahir MB, et al. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram Int. 2017;43:14552–14571. doi: 10.1016/j.ceramint.2017.08.143
  • Wada K, Ranasinghe CSK, Kuriki R, et al. Interfacial manipulation by rutile TiO2 nanoparticles to boost CO2 reduction into CO on a metal-complex/semiconductor hybrid photocatalyst. ACS Appl Mater Interfaces. 2017;9:23869–23877. doi: 10.1021/acsami.7b07484
  • Deng F, Zhong F, Zhao L, et al. One-step in situ hydrothermal fabrication of octahedral CdS/SnIn4S8 nano-heterojunction for highly efficient photocatalytic treatment of nitrophenol and real pharmaceutical wastewater. J Hazard Mater. 2017;340:85–95. doi: 10.1016/j.jhazmat.2017.06.002
  • Deng F, Lu X, Pei X, et al. Fabrication of ternary reduced graphene oxide/SnS2/ZnFe2O4 composite for high visible-light photocatalytic activity and stability. J Hazard Mater. 2017;332:149–161. doi: 10.1016/j.jhazmat.2017.01.058
  • Deng F, Zhong F, Lin D, et al. One-step hydrothermal fabrication of visible-light-responsive AgInS2/SnIn4S8 heterojunction for highly-efficient photocatalytic treatment of organic pollutants and real pharmaceutical industry wastewater. Appl Catal B. 2017;219:163–172. doi: 10.1016/j.apcatb.2017.07.051
  • Deng F, Zhao L, Luo X, et al. Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater. Chem Eng J. 2018;333:423–433. doi: 10.1016/j.cej.2017.09.022
  • Xia J, Liu X, Gao Y, et al. Green synthesis of Ag/ZnO microplates by doping Ag ions on basic zinc carbonate for fast photocatalytic degradation of dyes. Environ Technol. 2019;40:1–7. doi: 10.1080/09593330.2017.1422555
  • El-Salamony RA, Amdeha E, Ghoneim SA, et al. Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation. Environ Technol. 2017;38:3122–3136. doi: 10.1080/21622515.2017.1290148
  • Fkiri A, Wiem S, Sellami B, et al. Facile synthesis of Cu-doped ZnO nanoparticle in triethyleneglycol: photocatalytic activities and aquatic ecotoxicity. Environ Technol. 2019;40:1–11. doi: 10.1080/09593330.2019.1619845
  • Liu H, Du C, Bai H, et al. Fabrication of plate-on-plate Z-scheme SnS2/Bi2MoO6 heterojunction photocatalysts with enhanced photocatalytic activity. J Mater Sci. 2018;53:10743–10757. doi: 10.1007/s10853-018-2296-2
  • Li J, Liu X, Zhuo S, et al. Novel Bi2MoO6/TiO2 heterostructure microspheres for degradation of benzene series compound under visible light irradiation. J Colloid Interface Sci. 2016;463:145–153. doi: 10.1016/j.jcis.2015.10.055
  • Meng X, Zhang Z. Pd-doped Bi2MoO6 plasmonic photocatalysts with enhanced visible light photocatalytic performance. Appl Surf Sci. 2017;392:169–180. doi: 10.1016/j.apsusc.2016.08.113
  • Khan MA, Mutahir S, Wang F, et al. Facile one-step economical methodology of metal free g-C3N4 synthesis with remarkable photocatalytic performance under visible light to degrade trans-resveratrol. J Hazard Mater. 2019;367:293–303. doi: 10.1016/j.jhazmat.2018.12.095
  • Zada A, Ali N, Subhan F, et al. Suitable energy platform significantly improves charge separation of g-C3N4 for CO2 reduction and pollutant oxidation under visible-light. Prog Nat Sci: Mater Int. 2019;29:138–144. doi: 10.1016/j.pnsc.2019.03.004
  • Yasmeen H, Zada A, Liu S. Dye loaded MnO2 and chlorine intercalated g-C3N4 coupling impart enhanced visible light photoactivities for pollutants degradation. J Photochem Photobiol A. 2019;380:111867. doi: 10.1016/j.jphotochem.2019.111867
  • Fu Y, Wang X. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind Eng Chem Res. 2011;50:7210–7218. doi: 10.1021/ie200162a
  • Song Y, Li J, Wang C. Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J Mater Res. 2018;33:2612–2620. Epub 08/23. doi: 10.1557/jmr.2018.294
  • Yahya F, El-Rassy H, Younes G, et al. Synthesis and characterisation of mesoporous hybrid silica-polyoxometalate aerogels for photocatalytic degradation of rhodamine B and methylene blue. Int J Environ Anal Chem. 2019;99:1–22. doi: 10.1080/03067319.2019.1622010
  • Zhao C, Shao C, Li X, et al. Magnetically separable Bi2MoO6/ZnFe2O4 heterostructure nanofibers: controllable synthesis and enhanced visible light photocatalytic activity. J Alloys Comp. 2018;747:916–925. doi: 10.1016/j.jallcom.2018.03.107
  • Khan MA, Mutahir S, Wang F, et al. Facile synthesis of CNS/TNS sensitized with Cu biphenylamine frameworks for remarkable photocatalytic activity for organic pollutants degradation and bacterial inactivation. Sol Energy. 2019;186:204–214. doi: 10.1016/j.solener.2019.04.023
  • Yatmaz HC, Dizge N, Kurt MS. Combination of photocatalytic and membrane distillation hybrid processes for reactive dyes treatment. Environ Technol. 2017;38:2743–2751. doi: 10.1080/09593330.2016.1276222
  • Tao R, Zhao C, Shao C, et al. Bi2WO6/ZnFe2O4 heterostructures nanofibers: enhanced visible-light photocatalytic activity and magnetically separable property. Mater Res Bull. 2018;104:124–133. doi: 10.1016/j.materresbull.2018.03.041
  • Xuefeng H, Tariq M, Wanhong M, et al. Oxidative decomposition of rhodamine B dye in the presence of VO2+ and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. J Phys Chem B. 2006;110:26012–26018. doi: 10.1021/jp063588q
  • Pengxiang L, Chuncheng C, Juan Y, et al. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environ Sci Technol. 2005;39:8466–8474. doi: 10.1021/es050321g
  • Liu S, Wang Y, Ma L, et al. Ni2P/ZnS (CdS) core/shell composites with their photocatalytic performance. J Mater Res. 2018;33:3580–3588. Epub 08/13. doi: 10.1557/jmr.2018.269
  • Khan MA, Mutahir S, Wang F, et al. Sensitization of TiO2 nanosheets with Cu–biphenylamine framework to enhance photocatalytic degradation performance of toxic organic contaminants: synthesis, mechanism and kinetic studies. Nanotechnology. 2018;29:375605. doi: 10.1088/1361-6528/aacee0
  • Humayun M, Hu Z, Khan A, et al. Highly efficient degradation of 2, 4-dichlorophenol over CeO2/g-C3N4 composites under visible-light irradiation: detailed reaction pathway and mechanism. J Hazard Mater. 2019;364:635–644. doi: 10.1016/j.jhazmat.2018.10.088
  • Nikhil A, Thomas DA, Amulya S, et al. Synthesis, characterization, and comparative study of CdSe–TiO2 nanowires and CdSe–TiO2 nanoparticles. Sol Energy. 2014;106:109–117. doi: 10.1016/j.solener.2014.01.034
  • Zada A, Humayun M, Raziq F, et al. Exceptional visible-light-driven Cocatalyst-Free photocatalytic activity of g-C3N4 by Well Designed Nanocomposites with Plasmonic Au and SnO2. Adv Energy Mater. 2016;6:1601190–1601199. doi: 10.1002/aenm.201601190
  • Hongbo F, Shicheng Z, Tongguang X, et al. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ Sci Technol. 2008;42:2085–2091. doi: 10.1021/es702495w
  • Thwala MM, Dlamini LN. Photocatalytic reduction of Cr(VI) using Mg-doped WO3 nanoparticles. Environ Technol. 2019;40:1–16. doi: 10.1080/09593330.2019.1629635
  • Zhang LJ, Li S, Liu BK, et al. Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal. 2014;4:3724–3729. doi: 10.1021/cs500794j
  • Li J, Hao H, Zhu Z. Construction of g-C3N4-WO3-Bi2WO6 double Z-scheme system with enhanced photoelectrochemical performance. Mater Lett. 2016;168:180–183. doi: 10.1016/j.matlet.2016.01.058
  • Li H, Yu H, Quan X, et al. Uncovering the key role of the Fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (Metal=Cu, Ag, Au). ACS Appl Mater Interfaces. 2016;8:2111–2119. doi: 10.1021/acsami.5b10613
  • Iwase A, Ng YH, Ishiguro Y, et al. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc. 2011;133:11054–11057. doi: 10.1021/ja203296z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.