432
Views
7
CrossRef citations to date
0
Altmetric
Articles

Effects of Fe-loaded biochar on the bioavailability of Arsenic and cadmium to lettuce growing in a mining contaminated soil

ORCID Icon, &
Pages 2145-2153 | Received 19 Mar 2019, Accepted 31 Oct 2019, Published online: 21 Nov 2019

References

  • Conesa HM, Schulin R. The Cartagena-La Unión mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. J Environ Monit. 2010;12(6):1225–1233. doi: 10.1039/c000346h
  • Yin DX, Wang X, Peng B, et al. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere. 2017;186:928–937. doi: 10.1016/j.chemosphere.2017.07.126
  • Gomez-Eyles JL, Beesley L, Moreno-Jiménez E, et al. The potential of biochar amendments to remediate contaminated soils: biochar and soil biota. Boca Raton: CRC Press; 2013. p. 100–133.
  • Kumpiene J, Ore S, Renella G, et al. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut. 2006;144(1):62–69. doi: 10.1016/j.envpol.2006.01.010
  • Friesl W, Friedl J, Platzer K, et al. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environ Pollut. 2006;144(1):40–50. doi: 10.1016/j.envpol.2006.01.012
  • Sherman DM, Randall SR. Surface complexation of arsenic(V) to iron(III) hydr(oxides): structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta. 2003;67(22):4223–4230. doi: 10.1016/S0016-7037(03)00237-0
  • Xu YZ, Fang ZQ, Tsang EP. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles. Environ Sci Pollut Res. 2016;23(19):19164–19172. doi: 10.1007/s11356-016-7117-z
  • Wang T, Zhang LY, Li CF, et al. Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol. 2015;49(9):5654–5662. doi: 10.1021/es5061275
  • Tan XF, Liu YG, Gu YL, et al. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour Technol. 2016;212:318–333. doi: 10.1016/j.biortech.2016.04.093
  • Xu WJ, Mohammad S, Petri P, et al. Bioavailability of heavy metals in contaminated soil as affected by different mass ratios of biochars. Environ Technol. 2019. DOI:10.1080/21622515.2019.1609096.
  • Tuutijärvi T, Vahala R, Sillanpää M, et al. Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Environ Technol. 2012;33(16):927–1936. doi: 10.1080/09593330.2011.651162
  • Zhang M, Gao B, Varnoosfaderani S, et al. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol. 2013;130(1):457–462. doi: 10.1016/j.biortech.2012.11.132
  • Mohan D, Kumar H, Sarswat A, et al. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J. 2014;236(2):513–528. doi: 10.1016/j.cej.2013.09.057
  • Hu X, Ding ZH, Zimmerman AR, et al. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 2015;68:206–216. doi: 10.1016/j.watres.2014.10.009
  • Xu HJ, Zhang XP, Zhang YD. Modification of biochar by Fe2O3 for the removal of pyridine and quinoline. Environ Technol. 2018;39(11):1470–1480. doi: 10.1080/09593330.2017.1332103
  • Qiao JT, Liu TX, Wang XQ, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere. 2018;195:260–271. doi: 10.1016/j.chemosphere.2017.12.081
  • Mench M, Vangronsveld J, Clijsters H, et al. In situ metal immobilization and phytostabilization of contaminated soils. In: Norman T, Banuelos G, editor. Phytoremediation of contaminated soil and water. Boca Raton, FL: Lewis Publishers; 2000. p. 323–358.
  • Warren GP, Alloway BJ, Lepp NW, et al. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci Total Environ. 2003;311(1-3):19–33. doi: 10.1016/S0048-9697(03)00096-2
  • Wenzel WW, Kirchbaumer N, Prohaska T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta. 2001;436(2):309–323. doi: 10.1016/S0003-2670(01)00924-2
  • Whalley C, Grant A. Assessment of the phase selectivity of the European Community Bureau of reference (BCR) sequential extraction procedure for metals in sediment. Anal Chim Acta. 1994;291(3):287–295. doi: 10.1016/0003-2670(94)80024-3
  • Hale JR, Foos A, Zubrow JS, et al. Better characterization of arsenic and chromium in soils: a field-scale example. J Soil Contam. 1997;6(4):371–389. doi: 10.1080/15320389709383573
  • Raven KP, Jain A, Loeppert RH. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol. 1998;32:344–349. doi: 10.1021/es970421p
  • Samuel EB, Alejandra G, Aldo HR, et al. Surface rearrangement of nanoscale zerovalent iron: the role of pH and its implications in the kinetics of arsenate sorption. Environ. Technol. 2014;35(18):2365–2372. doi: 10.1080/09593330.2014.904932
  • Zhong SX, Yin GC, He HF, et al. Stabilization effect of arsenic by different iron minerals in paddy soils and the related mechanism. Acta Scientiae Circumstantiae. 2017;37(5):1931–1938. (in Chinese).
  • Goldberg S, Johnston CT. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci. 2001;234(1):204–216. doi: 10.1006/jcis.2000.7295
  • Ritcey GM. Tailings management in gold plants. Hydrometallurgy. 2005;78(1-2):3–20. doi: 10.1016/j.hydromet.2005.01.001
  • Knox AS, Seaman J, Adriano DC, et al. Chemophytostabilization of metals in contaminated soils. In: Wise DL, Trantolo DJ, Cichon EJ, et al. editors, Bioremediation of Contaminates soils. New York: Marcel Dekker. 2000, pp. 811–836.
  • Cancès B, Juillot F, Morin G, et al. Changes in arsenic speciation through a contaminated soil profile: a XAS based study. Sci Total Environ. 2008;397(1-3):178–189. doi: 10.1016/j.scitotenv.2008.02.023
  • Suda A, Makino T. Functional effects of ymanganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma. 2016;270:68–75. doi: 10.1016/j.geoderma.2015.12.017
  • Mench M, Vangronsveld J, Beckx C, et al. Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut. 2006;144(1):51–61. doi: 10.1016/j.envpol.2006.01.011
  • González V, García I, Moral FD, et al. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal-arsenic polluted soil. J Hazard Mater. 2012;205-206:72–80. doi: 10.1016/j.jhazmat.2011.12.011
  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, et al. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 2011;159(12):3269–3282. doi: 10.1016/j.envpol.2011.07.023
  • Dang VM, Joseph S, Van HT, et al. Immobilization of heavy metals in contaminated soil after mining activity by using biochar and other industrial by-products: the significant role of minerals on the biochar surfaces. Environ. Technol. 2019;40(24):3200–3215. doi: 10.1080/09593330.2018.1468487
  • Lu KP, Yang X, Shen JJ, et al. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ. 2014;191:124–132. doi: 10.1016/j.agee.2014.04.010
  • Sastre J, Hernández E, Rodriguez R, et al. Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident. Sci Total Environ. 2004;329(1-3):261–281. doi: 10.1016/j.scitotenv.2004.03.012
  • Hartley W, Edwards R, Lepp NW. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long- term leaching tests. Environ Pollut. 2004;131(3):495–504. doi: 10.1016/j.envpol.2004.02.017
  • Singh BR, Myhr K. Cadmium uptake by barley as affected by Cd sources and pH levels. Geoderma. 1998;84(1-3):185–194. doi: 10.1016/S0016-7061(97)00128-6
  • Lee SH, Lee JS, Choi YJ, et al. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere. 2009;77(8):1069–1075. doi: 10.1016/j.chemosphere.2009.08.056
  • Masscheleyn PH, Delaune RD, Patrick WH, et al. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 1991;25(8):1414–1419. doi: 10.1021/es00020a008
  • Zheng RL, Cai C, Liang JH, et al. The effects of biochars from rice residues on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere. 2012;89(7):856–862. doi: 10.1016/j.chemosphere.2012.05.008
  • Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb, and Zn in soil using amendments - a review. Waste Manag. 2008;28(1):215–225. doi: 10.1016/j.wasman.2006.12.012
  • Matsumoto S, Kasuga J, Makino T, et al. Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environ Exp Bot. 2016;125:42–51. doi: 10.1016/j.envexpbot.2016.02.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.