1,453
Views
39
CrossRef citations to date
0
Altmetric
Articles

Synergistic photocatalytic and Fenton-like degradation of organic contaminants using peroxymonosulfate activated by CoFe2O4@g-C3N4 composite

, , , &
Pages 2240-2253 | Received 20 Sep 2019, Accepted 17 Nov 2019, Published online: 06 Dec 2019

References

  • Ji F, Li C, Wei X, et al. Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of rhodamine B. Chem Eng J. 2013;231:434–440. doi: 10.1016/j.cej.2013.07.053
  • Li X, Yi L, Zhu Q, et al. Synthesis of coal fly ash supported MnO2 for the enhanced degradation of acid Red 73 in the presence of peroxymonosulfate. Environ Technol. 2019;40:1–12. doi: 10.1080/09593330.2017.1375999
  • Kim H-E, Lee J, Lee H, et al. Synergistic effects of TiO2 photocatalysis in combination with Fenton-like reactions on oxidation of organic compounds at circumneutral pH. Appl Catal B: Environ. 2012;115-116:219–224. doi: 10.1016/j.apcatb.2011.12.027
  • Oh WD, Lua SK, Dong Z, et al. Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes. J Hazard Mater. 2015;284:1–9. doi: 10.1016/j.jhazmat.2014.10.042
  • Silva IDN, Damasceno Junior E, Almeida JMF, et al. Experimental design for optimization of the photocatalytic degradation process of the remazol red dye by the TiO2/expanded perlite composite. Environ Technol. 2019;40:1–13. doi: 10.1080/09593330.2019.1672794
  • Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater. 2003;98:33–50. doi: 10.1016/S0304-3894(02)00282-0
  • An J, Huang M, Wang M, et al. Removal of Nonylphenol by using Fe-doped NaBiO3 compound as an efficient visible-light-heterogeneous Fenton-like catalyst. Environ Technol. 2019;40:3003–3016. doi: 10.1080/09593330.2018.1462856
  • Ye Y, Yang H, Wang X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts. Mater Sci Semicond Proc. 2018;82:14–24. doi: 10.1016/j.mssp.2018.03.033
  • Wang L, Guo X, Chen Y, et al. Cobalt-doped g-C3N4 as a heterogeneous catalyst for photo-assisted activation of peroxymonosulfate for the degradation of organic contaminants. Appl Surf Sci. 2019;467-468:954–962. doi: 10.1016/j.apsusc.2018.10.262
  • Wang J, Wang S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J. 2018;334:1502–1517. doi: 10.1016/j.cej.2017.11.059
  • Ghanbari F, Moradi M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J. 2017;310:41–62. doi: 10.1016/j.cej.2016.10.064
  • Li X, Huang X, Xi S, et al. Single cobalt atoms anchored on porous N-Doped graphene with dual reaction sites for efficient Fenton-like catalysis. J Am Chem Soc. 2018;140:12469–12475. doi: 10.1021/jacs.8b05992
  • Shi P, Su R, Wan F, et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of orange II in water by advanced oxidation technology based on sulfate radicals. Appl Catal B: Environ. 2012;123–124:265–272. doi: 10.1016/j.apcatb.2012.04.043
  • Shukla P, Wang S, Singh K, et al. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl Catal B: Environ. 2010;99:163–169. doi: 10.1016/j.apcatb.2010.06.013
  • Ren Y, Lin L, Ma J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu. Mn, and Zn) as heterogeneous catalysts in the water. Appl Catal B: Environ. 2015;165:572–578. doi: 10.1016/j.apcatb.2014.10.051
  • Tan C, Gao N, Fu D, et al. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Sep Purif Tech. 2017;175:47–57. doi: 10.1016/j.seppur.2016.11.016
  • Du Y, Ma W, Liu P, et al. Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. J Hazard Mater. 2016;308:58–66. doi: 10.1016/j.jhazmat.2016.01.035
  • Jing L, Xu Y, Huang S, et al. Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: highly efficient visible light photocatalytic and antibacterial activity. Appl Catal B: Environ. 2016;199:11–22. doi: 10.1016/j.apcatb.2016.05.049
  • Bai X, Wang L, Wang Y, et al. Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification. Appl Catal B: Environ. 2014;152–153:262–270. doi: 10.1016/j.apcatb.2014.01.046
  • Ge L, Han C, Liu J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl Catal B: Environ. 2011;108-109:100–107. doi: 10.1016/j.apcatb.2011.08.014
  • Lin K-YA, Zhang Z-Y. Degradation of bisphenol a using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst. Chem Eng J. 2017;313:1320–1327. doi: 10.1016/j.cej.2016.11.025
  • Li X, Li M, Yang J, et al. Synergistic effect of efficient adsorption g-C3N4/ZnO composite for photocatalytic property. J Phys Chem Solids. 2014;75:441–446. doi: 10.1016/j.jpcs.2013.12.001
  • Xia P, Zhu B, Cheng B, et al. 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-Scheme photocatalyst for enhanced photocatalytic activity. ACS Sustainable Chem Eng. 2018;6:965–973. doi: 10.1021/acssuschemeng.7b03289
  • Chen C-B, Zhang F, Li C-X, et al. A magnetic CoFe2O4–CNS nanocomposite as an efficient, recyclable catalyst for peroxymonosulfate activation and pollutant degradation. RSC Adv. 2017;7:55020–55025. doi: 10.1039/C7RA09665H
  • Huang S, Xu Y, Xie M, et al. Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf A Physicochem Eng Asp. 2015;478:71–80. doi: 10.1016/j.colsurfa.2015.03.035
  • Deng J, Shao Y, Gao N, et al. Cofe2o4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water. J Hazard Mater. 2013;262:836–844. doi: 10.1016/j.jhazmat.2013.09.049
  • Xu J, Li Y, Peng S, et al. Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys Chem Chem Phys. 2013;15:7657–7665. doi: 10.1039/c3cp44687e
  • Sun H, Yang X, Zhao L, et al. One-pot hydrothermal synthesis of octahedral CoFe/CoFe2O4 submicron composite as heterogeneous catalysts with enhanced peroxymonosulfate activity. J Mater Chem A. 2016;4:9455–9465. doi: 10.1039/C6TA02126C
  • Huang S, Xu Y, Liu Q, et al. Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts. Appl Catal B: Environ. 2017;218:174–185. doi: 10.1016/j.apcatb.2017.06.030
  • Shao H, Zhao X, Wang Y, et al. Synergetic activation of peroxymonosulfate by Co3O4 modified g-C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation. Appl Catal B: Environ. 2017;218:810–818. doi: 10.1016/j.apcatb.2017.07.016
  • Ayodhya D, Veerabhadram G. Microwave-assisted fabrication of g-C3N4 nanosheets sustained Bi2S3 heterojunction composites for the catalytic reduction of 4-nitrophenol. Environ Technol. 2019;40:1–16. doi: 10.1080/09593330.2019.1646323
  • Chen Z, Gao L. Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater Sci Eng B. 2007;141:82–86. doi: 10.1016/j.mseb.2007.06.003
  • Gao H, Yang H, Xu J, et al. Strongly coupled g-C3N4 nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation. Small. 2018;14(31):1801353. doi: 10.1002/smll.201801353
  • Nguyen XS, Pham TD, Vo HT, et al. Photocatalytic degradation of cephalexin by g-C3N4/Zn doped Fe3O4 under visible light. Environ Technol. 2019;40:1–10. doi: 10.1080/09593330.2019.1665110
  • Christoforidis KC, Montini T, Bontempi E, et al. Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites. Appl Catal B: Environ. 2016;187:171–180. doi: 10.1016/j.apcatb.2016.01.013
  • Wang X-j, Yang W-y, Li F-t, et al. In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res. 2013;52:17140–17150. doi: 10.1021/ie402820v
  • Ye L, Liu J, Jiang Z, et al. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B: Environ. 2013;142-143:1–7. doi: 10.1016/j.apcatb.2013.04.058
  • Wang H, Xu Y, Jing L, et al. Novel magnetic BaFe12O19/g-C3N4 composites with enhanced thermocatalytic and photo-Fenton activity under visible-light. J Alloy Comp. 2017;710:510–518. doi: 10.1016/j.jallcom.2017.03.144
  • Zhu B, Xia P, Li Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4 /Ag2WO4 photocatalyst. Appl Surf Sci. 2017;391:175–183. doi: 10.1016/j.apsusc.2016.07.104
  • Li J, Xu M, Yao G, et al. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation. Chem Eng J. 2018;348:1012–1024. doi: 10.1016/j.cej.2018.05.032
  • Huang QS, Zhou PJ, Yang H, et al. In situ generation of inverse spinel CoFe2O4 nanoparticles onto nitrogen-doped activated carbon for an effective cathode electrocatalyst of microbial fuel cells. Chem Eng J. 2017;325:466–473. doi: 10.1016/j.cej.2017.05.079
  • Zhou Z, Zhang Y, Wang Z, et al. Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Appl Surf Sci. 2008;254:6972–6975. doi: 10.1016/j.apsusc.2008.05.067
  • Xue X, Hanna K, Deng N. Fenton-like oxidation of rhodamine B in the presence of two types of iron (II. III) oxide. J Hazard Mater. 2009;166:407–414. doi: 10.1016/j.jhazmat.2008.11.089
  • Guo F, Shi W, Li M, et al. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Sep Purif Tech. 2019;210:608–615. doi: 10.1016/j.seppur.2018.08.055
  • Wang X-j, Wang Q, Li F-t, et al. Novel BiOCl–C3N4 heterojunction photocatalysts: in situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chem Eng J. 2013;234:361–371. doi: 10.1016/j.cej.2013.08.112
  • Tian N, Huang H, Guo Y, et al. A g-C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation. Appl Surf Sci. 2014;322:249–254. doi: 10.1016/j.apsusc.2014.10.071
  • Gao J, Wang Y, Zhou S, et al. A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. Chem Cat Chem. 2017;9:1708–1715.
  • Ai L, Zhang C, Li L, et al. Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B: Environ. 2014;148-149:191–200. doi: 10.1016/j.apcatb.2013.10.056
  • Jie Z, Xiao X, Huan Y, et al. The preparation and characterization of TiO2/r-GO/Ag nanocomposites and its photocatalytic activity in formaldehyde degradation. Environ Technol. 2019;40:1–13. doi: 10.1080/09593330.2019.1625955
  • Xu Y, Liu J, Xie M, et al. Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation. Chem Eng J. 2019;357:487–497. doi: 10.1016/j.cej.2018.09.098
  • Ren B, Shen W, Li L, et al. 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes. Appl Surf Sci. 2018;447:711–723. doi: 10.1016/j.apsusc.2018.04.064
  • Zhu K, Wang J, Wang Y, et al. Visible-light-induced photocatalysis and peroxymonosulfate activation over ZnFe2O4 fine nanoparticles for degradation of orange II. Catal Sci Technol. 2016;6:2296–2304. doi: 10.1039/C5CY01735A
  • Zhang G, Wu Z, Liu H, et al. Photoactuation healing of alpha-FeOOH@g-C3N4 catalyst for efficient and stable activation of persulfate. Small. 2017;13(41):1702225. doi: 10.1002/smll.201702225
  • Anipsitakis GP, Dionysiou DD, Gonzalez MA. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ Sci Technol. 2006;40:1000–1007. doi: 10.1021/es050634b
  • Armstrong DA, Huie RE, Lymar S, et al. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals. Bioinorg React Mech. 2013;9(1–4):59–61.
  • Guan YH, Ma J, Li XC, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ Sci Technol. 2011;45:9308–9314. doi: 10.1021/es2017363
  • Yuan R, Hu L, Yu P, et al. Nanostructured Co3O4 grown on nickel foam: an efficient and readily recyclable 3D catalyst for heterogeneous peroxymonosulfate activation. Chemosphere. 2018;198:204–215. doi: 10.1016/j.chemosphere.2018.01.135

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.