404
Views
27
CrossRef citations to date
0
Altmetric
Articles

Adsorption of sodium diclofenac in aqueous medium using graphene oxide nanosheets

, , &
Pages 2599-2609 | Received 10 Sep 2019, Accepted 16 Dec 2019, Published online: 30 Dec 2019

References

  • Rakić V, Rac V, Krmar M, et al. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. J Hazard Mater. 2015;282:141–149. doi: 10.1016/j.jhazmat.2014.04.062
  • Ahmed MJ. Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manage. 2017;190:274–282. doi: 10.1016/j.jenvman.2016.12.073
  • Lu M-C, Chen YY, Chiou M-R, et al. Occurrence and treatment efficiency of pharmaceuticals in landfill leachates. Waste Manage. 2016;55:257–264. doi: 10.1016/j.wasman.2016.03.029
  • Bhadra BN, Seo PW, Jhung SH. Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem Eng J. 2016;301:27–34. doi: 10.1016/j.cej.2016.04.143
  • Rodríguez-Álvarez T, Rodil R, Quintana JB, et al. Oxidation of non-steroidal anti-inflammatory drugs with aqueous permanganate. Water Res. 2013;47:3220–3230. doi: 10.1016/j.watres.2013.03.034
  • Sotelo JL, Ovejero G, Rodríguez A, et al. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem Eng J. 2014;240:443–453. doi: 10.1016/j.cej.2013.11.094
  • Hiew BYZ, Lee LY, Lee XJ, et al. Adsorptive removal of diclofenac by graphene oxide: optimization, equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng. 2019;98:150–162. doi: 10.1016/j.jtice.2018.07.034
  • aus der Beek T, Weber F-A, Bergmann A, et al. Pharmaceuticals in the environment-global occurrences and perspectives. Environ Toxicol Chem. 2016;35:823–835. doi: 10.1002/etc.3339
  • Evgenidou EN, Konstantinou IK, Lambropoulou DA. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. Sci Total Environ. 2015;505:905–926. doi: 10.1016/j.scitotenv.2014.10.021
  • Vona A, di Martino F, Garcia-Ivars J, et al. Comparison of different removal techniques for selected pharmaceuticals. J Water Process Eng. 2015;5:48–57. doi: 10.1016/j.jwpe.2014.12.011
  • Konicki W, Aleksandrzak M, Moszyński D, et al. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies. J Colloid Interface Sci. 2017;496:188–200. doi: 10.1016/j.jcis.2017.02.031
  • de Andrade MB, Guerra ACS, dos Santos T, et al. Innovative adsorbent based on graphene oxide decorated with Fe2O3/ZnO nanoparticles for removal of dipyrone from aqueous medium. Mater Lett. 2019;238:233–236. doi: 10.1016/j.matlet.2018.11.168
  • Nupearachchi CN, Mahatantila K, Vithanage M. Application of graphene for decontamination of water; Implications for sorptive removal. Groundwater Sustainable Dev. 2017;5:206–215. doi: 10.1016/j.gsd.2017.06.006
  • Mittal A, Mittal J, Malviya A, et al. Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interface Sci. 2010;344:497–507. doi: 10.1016/j.jcis.2010.01.007
  • Asfaram A, Ghaedi M, Agarwal S, et al. Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 2015;5:18438–18450. doi: 10.1039/C4RA15637D
  • Gupta VK, Jain CK, Ali I, et al. Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 2002;36:2483–2490. doi: 10.1016/S0043-1354(01)00474-2
  • Vu HC, Dwivedi AD, Le TT, et al. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: role of crosslinking metal cations in pH control. Chem Eng J. 2017;307:220–229. doi: 10.1016/j.cej.2016.08.058
  • Andrade MB, Santos TRT, Fernandes Silva M, et al. Graphene oxide impregnated with iron oxide nanoparticles for the removal of atrazine from the aqueous medium. Sep Sci Technol. 2019;54(16):2653–2670. doi: 10.1080/01496395.2018.1549077
  • Bhadra BN, Ahmed I, Kim S, et al. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem Eng J. 2017;314:50–58. doi: 10.1016/j.cej.2016.12.127
  • Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv. Colloid Interface Sci. 2014;211:93–101. doi: 10.1016/j.cis.2014.06.006
  • Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut Res. 2013;20:2828–2843. doi: 10.1007/s11356-013-1524-1
  • Ahmaruzzaman M, Gupta VK. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res. 2011;50:13589–13613. doi: 10.1021/ie201477c
  • Teker M, Saltabaş Ö, İmamoğlu M. Adsorption of cobalt by activated carbon from the rice hulls. J Environ Sci Health, Part A: Environ Sci Eng Toxicol. 1997;32:2077–2086.
  • Gupta VK, Atar N, Yola ML, et al. A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 2014;48:210–217. doi: 10.1016/j.watres.2013.09.027
  • Lingamdinne LP, Koduru JR, Roh H, et al. Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy. 2016;165(Part 1):90–96. doi: 10.1016/j.hydromet.2015.10.021
  • Wang J, Chen B. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem Eng J. 2015;281:379–388. doi: 10.1016/j.cej.2015.06.102
  • Ghaedi M, Hajjati S, Mahmudi Z, et al. Modeling of competitive ultrasonic assisted removal of the dyes – methylene blue and Safranin-O using Fe3O4 nanoparticles. Chem Eng J. 2015;268:28–37. doi: 10.1016/j.cej.2014.12.090
  • Kovtyukhova NI, Ollivier PJ, Martin BR, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater. 1999;11:771–778. doi: 10.1021/cm981085u
  • Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339. doi: 10.1021/ja01539a017
  • Lagergren S. Zur theorie der sogenannten absorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar: PA Norstedt & söner; 1898.
  • Ho YS, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot. 1998;76:183–191. doi: 10.1205/095758298529326
  • Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc. 1916;38:2221–2295. doi: 10.1021/ja02268a002
  • Freundlich H. Over the adsorption in solution. J Phys Chem. 1906;57:385–470.
  • Temkin M, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS. 1940;12:217–222.
  • Tran HN, You S-J, Hosseini-Bandegharaei A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res. 2017;120:88–116. doi: 10.1016/j.watres.2017.04.014
  • Tran HN, You S-J, Chao H-P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study. J Environ Chem Eng. 2016;4:2671–2682. doi: 10.1016/j.jece.2016.05.009
  • Muniyalakshmi M, Sethuraman K, Silambarasan D. Synthesis and characterization of graphene oxide nanosheets. Mater Today: Proc. 2019 . https://doi.org/10.1016/j.matpr.2019.06.375.
  • Konicki W, Aleksandrzak M, Mijowska E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem Eng Res Des. 2017;123:35–49. doi: 10.1016/j.cherd.2017.03.036
  • Betancur AF, Ornelas-Soto N, Garay-Tapia AM, et al. A general strategy for direct synthesis of reduced graphene oxide by chemical exfoliation of graphite. Mater Chem Phys. 2018;218:51–61. doi: 10.1016/j.matchemphys.2018.07.019
  • Santos TRT, Andrade MB, Silva MF, et al. Development of α and γ-Fe2O3 decorated graphene oxides for glyphosate removal from water. Environ Technol. 2019;40(9):1118–1137. doi: 10.1080/09593330.2017.1411397
  • Marin P, Bergamasco R, Módenes AN, et al. Synthesis and characterization of graphene oxide functionalized with MnFe2O4 and supported on activated carbon for glyphosate adsorption in fixed bed column. Process Saf Environ Prot. 2019;123:59–71. doi: 10.1016/j.psep.2018.12.027
  • Al-Khateeb LA, Almotiry S, Salam MA. Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem Eng J. 2014;248:191–199. doi: 10.1016/j.cej.2014.03.023
  • Yamaguchi NU, Bergamasco R, Hamoudi S. Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water. Chem Eng J. 2016;295:391–402. doi: 10.1016/j.cej.2016.03.051
  • White RL, White CM, Turgut H, et al. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. J Taiwan Inst Chem Eng. 2018;85:18–28. doi: 10.1016/j.jtice.2018.01.036
  • Gupta VK, Nayak A, Agarwal S, et al. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid Interface Sci. 2014;417:420–430. doi: 10.1016/j.jcis.2013.11.067
  • Gupta VK, Ali I, Saleh TA, et al. Chromium removal from water by activated carbon developed from waste rubber tires. Environ Sci Pollut Res. 2013;20:1261–1268. doi: 10.1007/s11356-012-0950-9
  • Guerrero-Contreras J, Caballero-Briones F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater Chem Phys. 2015;153:209–220. doi: 10.1016/j.matchemphys.2015.01.005
  • Hiew BYZ, Lee LY, Lai KC, et al. Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ Res. 2019;168:241–253. doi: 10.1016/j.envres.2018.09.030
  • Beitollahi H, Hamzavi M, Torkzadeh-Mahani M. Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheet paste electrode. Mater Sci Eng: C. 2015;52:297–305. doi: 10.1016/j.msec.2015.03.031
  • Liu T, Li Y, Du Q, et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B. 2012;90:197–203. doi: 10.1016/j.colsurfb.2011.10.019
  • Larous S, Meniai A-H. Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive stones. Int J Hydrogen Energy. 2016;41:10380–10390. doi: 10.1016/j.ijhydene.2016.01.096
  • Bajpai SK, Bhowmik M. Adsorption of diclofenac sodium from aqueous solution using polyaniline as a potential sorbent. I. Kinetic studies. J Appl Polym Sci. 2010;117:3615–3622.
  • Jiang M, Yang W, Zhang Z, et al. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins. J Environ Sci. 2015;31:226–234. doi: 10.1016/j.jes.2014.09.035
  • Zhang Y, Cao B, Zhao L, et al. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl Surf Sci. 2018;427:147–155. doi: 10.1016/j.apsusc.2017.07.237
  • Wu Q, Feng C, Wang C, et al. A facile one-pot solvothermal method to produce superparamagnetic graphene–Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution. Colloids Surf B. 2013;101:210–214. doi: 10.1016/j.colsurfb.2012.05.036
  • Jauris IM, Matos CF, Saucier C, et al. Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys Chem Chem Phys. 2016;18:1526–1536. doi: 10.1039/C5CP05940B
  • Kim S, Park CM, Jang M, et al. Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: a review. Chemosphere. 2018;212:1104–1124. doi: 10.1016/j.chemosphere.2018.09.033
  • Wang J, Chen Z, Chen B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ Sci Technol. 2014;48:4817–4825. doi: 10.1021/es405227u
  • Lonappan L, Rouissi T, Kaur Brar S, et al. An insight into the adsorption of diclofenac on different biochars: mechanisms, surface chemistry, and thermodynamics. Bioresour Technol. 2018;249:386–394. doi: 10.1016/j.biortech.2017.10.039
  • Wei H, Deng S, Huang Q, et al. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 2013;47:4139–4147. doi: 10.1016/j.watres.2012.11.062
  • Zhao Y, Liu F, Qin X. Adsorption of diclofenac onto goethite: adsorption kinetics and effects of pH. Chemosphere. 2017;180:373–378. doi: 10.1016/j.chemosphere.2017.04.007
  • Hasan Z, Khan NA, Jhung SH. Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chem Eng J. 2016;284:1406–1413. doi: 10.1016/j.cej.2015.08.087
  • de Franco MAE, de Carvalho CB, Bonetto MM, et al. Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: isotherms, thermodynamic study and breakthrough curves modeling. J Cleaner Prod. 2018;181:145–154. doi: 10.1016/j.jclepro.2018.01.138
  • Saucier C, Adebayo MA, Lima EC, et al. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. J Hazard Mater. 2015;289:18–27. doi: 10.1016/j.jhazmat.2015.02.026
  • Naghipour D, Hoseinzadeh L, Taghavi K, et al. Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree. Data Brief. 2018;18:1082–1087. doi: 10.1016/j.dib.2018.03.068
  • Antunes M, Esteves VI, Guégan R, et al. Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem Eng J. 2012;192:114–121. doi: 10.1016/j.cej.2012.03.062
  • Araujo LA, Bezerra CO, Cusioli LF, et al. Moringa oleifera biomass residue for the removal of pharmaceuticals from water. J Environ Chem Eng. 2018;6:7192–7199. doi: 10.1016/j.jece.2018.11.016
  • Wu L, Du C, He J, et al. Effective adsorption of diclofenac sodium from neutral aqueous solution by low-cost lignite activated cokes. J Hazard Mater. 2020;384:121284. doi: 10.1016/j.jhazmat.2019.121284
  • França DB, Trigueiro P, Silva Filho EC, et al. Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites. Chemosphere. 2020;242:125109. doi: 10.1016/j.chemosphere.2019.125109
  • Álvarez S, Ribeiro RS, Gomes HT, et al. Synthesis of carbon xerogels and their application in adsorption studies of caffeine and diclofenac as emerging contaminants. Chem Eng Res Des. 2015;95:229–238. doi: 10.1016/j.cherd.2014.11.001
  • Gil A, Santamaría L, Korili SA. Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. Colloid Interface Sci Commun. 2018;22:25–28. doi: 10.1016/j.colcom.2017.11.007
  • Hu X, Cheng Z. Removal of diclofenac from aqueous solution with multi-walled carbon nanotubes modified by nitric acid. Chin J Chem Eng. 2015;23:1551–1556. doi: 10.1016/j.cjche.2015.06.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.