185
Views
2
CrossRef citations to date
0
Altmetric
Articles

Understanding the by-product formation potential during phenol oxidation from in-situ electro-generated radicals by microalgae harvesting

, &
Pages 3533-3545 | Received 03 Dec 2019, Accepted 17 Feb 2020, Published online: 04 Mar 2020

References

  • Budavari S, O’neil MJ, Smith A, et al. The Merck index: an encyclopedia of chemicals, drugs, and biological. Whitehouse Station (NJ): Merck & Co. Inc; 1996. p. 450, 1674.
  • ATSDR. Medical management guidelines for phenol. [cited 2018 April 12]. Available from: https://www.atsdr.cdc.gov/mmg/mmg.asp?id=144&tid=27
  • USEPA. Toxic and priority pollutants under the Clean Water Act. 2014. [cited 2019 Nov 22]. Available from: https://www.epa.gov/
  • Abdelwahab O, Amin NK, El-Ashtoukhy EZ. Electrochemical removal of phenol from oil refinery wastewater. J Hazard Mater. 2009;163(2-3):711–716. doi: 10.1016/j.jhazmat.2008.07.016
  • Mohammadi S, Kargari A, Sanaeepur H, et al. Phenol removal from industrial wastewaters: a short review. Desalin Water Treat. 2015;53(8):2215–2234. doi: 10.1080/19443994.2014.883327
  • De A, De AK, Panda GS, et al. Synthesis of zero valent iron nanoparticle and its application as a dephenolization agent for coke oven plant wastewater situated in West Bengal: India. Environ Prog Sustain Energy. 2017;36(6):1700–1708. doi: 10.1002/ep.12634
  • Villegas LGC, Mashhadi N, Chen M, et al. A short review of techniques for phenol removal from wastewater. Curr Pollut Rep. 2016;2(3):157–167. doi: 10.1007/s40726-016-0035-3
  • Zhang W, Wang CA, Li G, et al. Thermal removal of COD and NH3-N from Lurgi coal-gasification wastewater. Environ Prog Sustain Energy. 2017;36(5):1333–1341. doi: 10.1002/ep.12600
  • Lucas MS, Peres JA, Puma GL. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Sep Purif Technol. 2010;72(3):235–241. doi: 10.1016/j.seppur.2010.01.016
  • Izadi A, Hosseini M, Darzi GN, et al. Treatment of paper-recycling wastewater by electrocoagulation using aluminum and iron electrodes. J Environ Health Sci Eng. 2018;16(2):257–264. doi: 10.1007/s40201-018-0314-6
  • Liang Z, Wang Y, Zhou Y, et al. Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride. Chem Eng J. 2009;152(1):88–94. doi: 10.1016/j.cej.2009.03.036
  • Prasad RK. Color removal from distillery spent wash through coagulation using Moringa oleifera seeds: use of optimum response surface methodology. J Hazard Mater. 2009;165(1-3):804–811. doi: 10.1016/j.jhazmat.2008.10.068
  • Guan Q, Kong Z, Xie Z, et al. Catalytic gasification of phenol in supercritical water over bimetallic Co–Ni/AC catalyst. Environ Technol. 2019;40(16):2182–2190. doi: 10.1080/09593330.2018.1439111
  • Paisio CE, Agostini E, González PS. Application of two bioassays as potential indicators of phenol phytoremediation efficiency by tobacco hairy roots. Environ Technol. 2019: 1–8. https://doi.org/10.1080/09593330.2019.1649471.
  • Metcalf & Eddy, Inc., George Tchobanoglous, Franklin Burton, H. D. S. Wastewater engineering: treatment and reuse. 4th ed. McGraw-Hill Education; 2002.
  • Bakire S, Yang X, Ma G, et al. Developing predictive models for toxicity of organic chemicals to green algae based on mode of action. Chemosphere. 2018;190:463–470. doi:10.1016/j.chemosphere.2017.10.028
  • Leusch FD, De Jager C, Levi Y, et al. Comparison of five in vitro bioassays to measure estrogenic activity in environmental waters. Environ Sci Technol. 2010;44(10):3853–3860. doi: 10.1021/es903899d
  • Qiu Z, Zheng T, Dai Q, et al. Sulfide and arsenic compounds removal from liquid digestate by ferric coagulation and toxicity evaluation. Water Environ Res. 2019;91:1613–1623. doi:10.1002/wer.1160
  • Al-Zuhair S. Microalgae cultivation for phenol removal from wastewater. MOJ Toxicol. 2017;3(6):140–141. doi:10.15406/mojt.2017.03.00070
  • Ruksrithong C, Phattarapattamawong S. Removals of estrone and 17β-estradiol by microalgae cultivation: kinetics and removal mechanisms. Environ Technol. 2019;40(2):163–170. doi: 10.1080/09593330.2017.1384068
  • Gonzalez-Camejo J, Barat R, Pachés M, et al. Wastewater nutrient removal in a mixed microalgae–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environ Technol. 2018;39(4):503–515. doi: 10.1080/09593330.2017.1305001
  • Kumar D, Rai J, Gaur JP. Removal of metal ions by Phormidium bigranulatum (Cyanobacteria)-dominated mat in batch and continuous flow systems. Bioresour Technol. 2012;104:202–207. doi:10.1016/j.biortech.2011.11.002
  • Zhan XM, Wang JL, Wen XH, et al. Indirect electrochemical treatment of saline dyestuff wastewater. Environ Technol. 2001;22(9):1105–1111. doi: 10.1080/09593332208618222
  • Barrera-Díaz C, Cañizares P, Fernández FJ, et al. Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents. J Mex Chem Soc. 2014;58(3):256–275.
  • Mirahsani A, Sartaj M, Giorgi JB. Assessment and optimization of total ammonia nitrogen (TAN) adsorption in aqueous phase by sodium functionalized graphene oxide using response surface methodology (RSM). Environ Prog Sustain Energy. doi:10.1002/ep.13344
  • Wang JP, Chen YZ, Wang Y, et al. Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Res. 2011;45(17):5633–5640. doi: 10.1016/j.watres.2011.08.023
  • Ghosh RK, Ray DP, Debnath S, et al. Optimization of process parameters for methylene blue removal by jute stick using response surface methodology. Environ Prog Sustain Energy. doi:10.1002/ep.13146
  • Singh H, Sonal S, Mishra BK. Hexavalent chromium removal by monopolar electrodes based electrocoagulation system: optimization through Box–Behnken design. J Water Supply Res Technol-Aqua. 2018;67(2):147–161. doi: 10.2166/aqua.2017.135
  • Raju GB, Karuppiah MT, Latha SS, et al. Treatment of wastewater from synthetic textile industry by electrocoagulation–electrooxidation. Chem Eng J. 2008;144(1):51–58. doi: 10.1016/j.cej.2008.01.008
  • Singh H, Mishra BK. Degradation of cyanide, aniline and phenol in pre-treated coke oven wastewater by peroxide assisted electro-oxidation process. Water Sci Technol. 2018;78(10):2214–2227. doi: 10.2166/wst.2018.503
  • APHA (American Public Health Association). Standard methods for the examination of water and wastewater. 22nd ed. American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA; 2012.
  • Moghaddam SS, Moghaddam MA, Arami M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. J Hazard Mater. 2010;175(1-3):651–657. doi: 10.1016/j.jhazmat.2009.10.058
  • Comninellis C, Pulgarin C. Anodic oxidation of phenol for waste water treatment. J Appl Electrochem. 1991;21(8):703–708. doi: 10.1007/BF01034049
  • Kumar N, Banerjee C, Kumar N, et al. A novel non-starch based cationic polymer as flocculant for harvesting microalgae. Bioresour Technol. 2019;271:383–390. doi: 10.1016/j.biortech.2018.09.073
  • Kirk DW, Sharifian H, Foulkes FR. Anodic oxidation of aniline for waste water treatment. J Appl Electrochem. 1985;15(2):285–292. doi:10.1007/BF00620944
  • Mathiyarasu J, Joseph J, Pani KLN, et al. Electrochemical detection of phenol in aqueous solutions. Indian J Technol. 2004;11:797–803.
  • Bunce NJ, Bejan D. Mechanism of electrochemical oxidation of ammonia. Electrochim Acta. 2011;56(24):8085–8093. doi: 10.1016/j.electacta.2011.07.078
  • Zöllig H, Fritzsche C, Morgenroth E, et al. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine. Water Res. 2015;69:284–294. doi: 10.1016/j.watres.2014.11.031
  • Luo H, Li C, Wu C, et al. Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode. Electrochim Acta. 2015;186:486–493. doi: 10.1016/j.electacta.2015.10.194
  • Allouche A, Ferro Y, Angot T, et al. Hydrogen adsorption on graphite (0001) surface: a combined spectroscopy–density-functional-theory study. J Chem Phys. 2005;123(12):124701. doi: 10.1063/1.2043008
  • Gattrell M, Kirk DW. The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can J Chem Eng. 1990;68(6):997–1003. doi: 10.1002/cjce.5450680615
  • Maran JP, Manikandan S, Priya B, et al. Box-Behnken design based multi-response analysis and optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from tea (Camellia sinensis L.) leaves. J Food Sci Technol. 2015;52(1):92–104. doi: 10.1007/s13197-013-0985-z
  • Kumar A, Sengupta B, Kannaujiya MC, et al. Treatment of coke oven wastewater using ozone with hydrogen peroxide and activated carbon. Desalin Water Treat. 2017;69:352–365. doi: 10.5004/dwt.2017.20336
  • Bagastyo AY, Radjenovic J, Mu Y, et al. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes. Water Res. 2011;45(16):4951–4959. doi: 10.1016/j.watres.2011.06.039
  • Ryu BG, Kim J, Han JI, et al. Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresour Technol. 2017;225:58–66. doi: 10.1016/j.biortech.2016.11.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.