355
Views
11
CrossRef citations to date
0
Altmetric
Articles

Removal of 17α-ethinylestradiol and caffeine from wastewater by UASB-Fenton coupled system

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 3771-3782 | Received 02 Oct 2019, Accepted 04 Mar 2020, Published online: 18 Mar 2020

References

  • Castro-Pastrana LI, Baños-Medina MI, López-Luna MA, et al. Ecofarmacovigilancia en México: perspectivas para su implementación. Revista Mexicana de Ciencias Farmacéuticas. 2015;46(3):16–40. (in Spanish).
  • Yang Y, Ok YS, Kim KH, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ. 2017;596-597:303–320. doi:10.1016/j.scitotenv.2017.04.102.
  • Cases V, Alonso V, Argandoña V, et al. Endocrine disrupting compounds: a comparison of removal between conventional activated sludge and membrane bioreactors. Desalination. 2011;272(1-3):240–245. doi:10.1016/j.desal.2011.01.026.
  • Czerwonka G, Kaca W. Comparing methods of 17α-ethinylestradiol (EE2) determination in surface water. Polish J Env Studies. 2012;21(4):1089–1093.
  • Chatterjee A, Abraham J. Mycoremediation of 17 β-estradiol using trichoderma citrinoviride strain AJAC3 along with enzyme studies. Environ Progress Sustainable Energy. 2019;38(4): 13142. doi:10.1002/ep.13142.
  • Ting YF, Praveena SM. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. Environ Monitoring and Assessment. 2017. doi:10.1007/s10661-017-5890-x.
  • Adeel M, Song X, Wang Y, et al. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int. 2017;99:107–119. doi:10.1016/j.envint.2016.12.010.
  • European Commission. Proposal for a directive of the European parliament and of the council amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. COM (2011) 876 (Vol. 7); 2012. Available from: https://ec.europa.eu/smart-regulation/impact/ia_carried_out/docs/ia_2012/com_2011_0876_en.pdf.
  • European Commission. Proposal for a directive of the European parliament and of the council on the quality of water intended for human consumption (recast). COM (2017) 753 Final; 2018. Available from: https://ec.europa.eu/environment/water/water-drink/pdf/revised_drinking_water_directive.pdf.
  • Bruton T, Alboloushi A, De La Garza B, et al. Fate of caffeine in the environment and ecotoxicological considerations. In contaminants of emerging concern in the environment: ecological and human health considerations. Am Chem Soc. 2010: 257–273. doi:10.1021/bk-2010-1048.ch012.
  • Zhang D, Luo J, Lee ZMP, et al. Characterization of microbial communities in wetland mesocosms receiving caffeine-enriched wastewater. Environ Sci Pollut Res. 2016;23(14):14526–14539.
  • Indermuhle C, de Vidales MJM, Sáez C, et al. Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere. 2013;93(9):1720–1725.
  • Mohapatra BR, Harris N, Nordin R, et al. Purification and characterization of a novel caffeine oxidase from Alcaligenes species. J Biotechnol. 2006;125(3):319–327.
  • NRMMC. Australian guidelines for water recycling: augmentation of drinking water supplies (phase 2). Canberra: Natural Resource Management Ministerial Council, Environment Protection and Heritage Council and the National Health Medical Research Council; 2008.
  • Aguirre-Martínez GV, Del Valls TA, Martín-Díaz ML. Identification of biomarkers responsive to chronic exposure to pharmaceuticals in target tissues of Carcinus maenas. Mar Environ Res. 2013;87-88:1–11. doi:10.1016/j.marenvres.2013.02.011.
  • Mohagheghian A, Nabizadeh R, Mesdghinia A, et al. Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran, Iran. J Environ Health Sci Eng. 2014;12(1):97. doi:10.1186/2052-336X-12-97.
  • King OC, Van de Merwe JP, McDonald JA, et al. Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents: Is the progestin also cause for concern? Environ Toxicol Chem. 2016;35(6):1378–1385. doi:10.1002/etc.3304.
  • Sui Q, Huang J, Deng S, et al. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 2010;44(2):417–426. doi:10.1016/j.watres.2009.07.010.
  • Cruz-Esteban S, Mendoza B, Malo R, et al. Drugs and endocrine disruptors in surface water bodies impacted by discharges of wastewater in Tapachula Chiapas, México [master’s thesis]. El Colegio de la Frontera Sur; 2013. (In Spanish).
  • He K, Echigo S, Asada Y, et al. Determination of caffeine and its metabolites in wastewater treatment plants using solid-phase extraction and liquid chromatography–tandem mass spectrometry. Anal Sci. 2018;34(3):349–354. doi:10.2116/analsci.34.349.
  • Huang D, Hu C, Zeng G, et al. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci Total Environ. 2017;574:1599–1610. doi:10.1016/j.scitotenv.2016.08.199.
  • Yetilmezsoy K, Sakar S. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton’s oxidation. J Hazard Mater. 2008;151(2):547–558. doi:10.1016/j.jhazmat.2007.06.013.
  • Bhatti ZA, Maqbool F, Malik AH, et al. UASB reactor startup for the treatment of municipal wastewater followed by advanced oxidation process. Braz J Chem Eng. 2014;31(3):715–726. doi:10.1590/0104-6632.20140313s00002786.
  • Ismail S, Tawfik A. Performance of passive aerated immobilized biomass reactor coupled with Fenton process for treatment of landfill leachate. Int Biodeterioration & Biodegradation. 2016;111:22–30. doi:10.1016/j.ibiod.2016.04.010.
  • Ismail S, Tawfik A. Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system. Water Sci Technol. 2016;73(7):1700–1708. doi:10.2166/wst.2015.655.
  • Rajesh Banu J, Anandan S, Kaliappan S, et al. Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Sol Energy. 2008;82:812–819. doi:10.1016/j.solener.2008.02.015.
  • Alves Santos EM, Pinheiro do Nascimento AT, Soares Paulino TR, et al. Anaerobic reactor type UASB conjunction with process Fenton to remove color and chemical oxygen demand textile industry of synthetic wastewater. Eng Sanit Ambient. 2017;22(2):285–292. doi:10.1590/S1413-41522016148154.
  • Sokkanathan G, Godvin Sharmila V, Kaliappan S, et al. Combinative treatment of phenol-rich retting-pond wastewater by a hybrid upflow anaerobic sludge blanket reactor and solar photofenton process. J Environ Manage. 2018;206(2):999–1006. doi:10.1016/j.jenvman.2017.11.083.
  • Banu JR, Sokkanathan G, Godvin Sharmila V, et al. Combinative treatment of chocolaterie wastewater by a hybrid upflow anaerobic sludge blanket reactor and solar photo Fenton process. Desalin Water Treat. 2018;121:343–350. doi:10.5004/dwt.2018.22542.
  • Rubio-Clemente A, Chica EL, Peñuela GA. Application of the Fenton process in the treatment of wastewater of petrochemical origin. Ingeniería y Competitividad. 2014;16(2):211–223. (In Spanish).
  • Dos Santos SL, Chaves SRM, Van Haandel A. Influence of phase separator design on the performance of UASB reactors treating municipal wastewater. Water SA. 2016;42(2):176–182. doi:10.4314/wsa.v42i2.01.
  • Rizvi H, Ahmad N, Abbas F, et al. Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arab. J Chem. 2015;8(6):780–786. doi:10.1016/j.arabjc.2013.12.016.
  • Zhang W, Zhang X, Wang D, et al. Trace elements enhance biofilm formation in UASB reactor for solo simple molecule wastewater treatment. Bioresour Technol. 2011;102(19):9296–9299. doi:10.1016/j.biortech.2011.06.095.
  • Lu Y, Slater F, Bello-Mendoza R, et al. Shearing of biofilms enables selective layer based microbial sampling and analysis. Biotechnol Bioeng. 2013;110(10):2600–2605. doi:10.1002/bit.24947.
  • Chen Z, Wang H, Chen Z, et al. Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin. J Hazard Mater. 2011;185:905–913. doi:10.1016/j.jhazmat.2010.09.106.
  • Queiroz FB, Brandt EMF, Aquino SF, et al. Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times. Water Sci Technol. 2012;66(12):2562–2569. doi:10.2166/wst.2012.48.
  • Butkovskyi A, Leal LH, Rijnaarts HHM, et al. Fate of pharmaceuticals in full-scale source separated sanitation system. Water Res. 2015;85:384–392. doi:10.1016/j.watres.2015.08.045.
  • Li WC, Chen H, Jin Y, et al. Treatment of 3,4,5-trimethoxybenzaldehyde and di-bromo-aldehyde manufacturing wastewater by the coupled Fenton pretreatment and UASB reactor with emphasis on optimization and chemicals analysis. Sep Purif Technol. 2015;142:40–47. doi:10.1016/j.seppur.2014.12.013.
  • Ifelebuegu AO, Ezenwa CP. Removal of endocrine disrupting chemicals in wastewater treatment by Fenton-like oxidation. Water Air Soil Pollut. 2011;217(1-4):213–220. doi:10.1007/s11270-010-0580-0.
  • Pouran SR, Aziz AR, Daud WMA W. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem. 2015;21:53–69. doi:10.1016/j.jiec.2014.05.005.
  • Ghosh P, Samanta AN, Ray S. COD reduction of petrochemical industry wastewater using Fenton’s oxidation. Can J Chem Eng. 2010;88(6):1021–1026. doi:10.1002/cjce.20353.
  • Gümüş D, Akbal F. Comparison of Fenton and electro-Fenton processes for oxidation of phenol. Process Saf Env Prot. 2016;103:252–258. doi:10.1016/j.psep.2016.07.008.
  • APHA. Standard method for water and wastewater examination. 17th ed. Washington, D.C., USA; 1992.
  • Eisenberg G. Colorimetric determination of hydrogen peroxide. Industrial & Engineering Chemistry Analytical Edition. 1943;15(5):327–328.
  • DOF. NMX-AA-034-SCFI-2015. Análisis de agua medición de sólidos y sales disueltas en aguas naturales, residuales y residuales tratadas método de prueba; 2015.
  • Miller J, Miller JC. Statistics and chemometrics for analytical chemistry. Essex, England: Pearson Education; 2018.
  • R Development Core Team. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014; Available from: http://www.R-project.org.
  • Santos EMA, Nascimento ATPD, Paulino TRS, et al. Anaerobic reactor type UASB conjunction with process Fenton to remove color and chemical oxygen demand textile industry of synthetic wastewater. Engenharia Sanitaria e Ambiental. 2017;22(2):285–292. doi:10.1590/s1413-41522016148154.
  • Caldera YA, Madueño PI, Griborio AG, et al. Effect of hydraulic retention time in the operation of UASB reactor treating meat effluents. Multiciencias. 2003;3(1):12. (In Spanish).
  • Ahmed MB, Zhou JL, Ngo HH, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater. 2017;323:274–298. doi:10.1016/j.jhazmat.2016.04.045.
  • Lee DH, Behera SK, Kim J, et al. Methane production potential of leachate generated from Korean food waste recycling facilities: a lab scale study. Waste Manage. 2009;29:876–882. doi:10.1016/j.wasman.2008.06.033.
  • Malina J. Design of anaerobic processes for treatment of industrial and municipal waste. Book volume VII. Florida, USA: Routledge; 2017.
  • Ramos-Vaquerizo F, Cruz-Salomón A, Ríos-Valdovinos E, et al. Anaerobic treatment of vinasse from sugarcane ethanol production in expanded granular sludge bed bioreactor. J Chem Eng Process Technol. 2018;9(375):3. doi:10.4172/2157-7048.1000375.
  • Puebla CYG, Pérez CSR, Hernández MSJJ, et al. Performance of a UASB reactor treating coffee wet wastewater. Revista Ciencias Técnicas Agropecuarias. 2013;22(3):35–41.
  • Umar M, Aziz HA, Yusoff MS. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manage. 2010;30(11):2113–2121. doi:10.1016/j.wasman.2010.07.003.
  • Amor C, De Torres-Socías E, Peres JA, et al. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J Hazard Mater. 2015;286:261–268. doi:10.1016/j.jhazmat.2014.12.036.
  • Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng. 2014;2(1):557–572. doi:10.1016/j.jece.2013.10.011.
  • Cheng Y, Chen Y, Lu J, et al. Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: removal and conversion of organic pollutants as well as estimation of operational costs. Environ Sci Pollut Res. 2018;25:12083–12095. doi:10.1007/s11356-018-1400-0.
  • Li Y, Zhang A. Removal of steroid estrogens from waste activated sludge using Fenton oxidation: Influencing factors and degradation intermediates. Chemosphere. 2014;105:24–30. doi:10.1016/j.chemosphere.2013.10.043.
  • Wang N, Zheng T, Zhang G, et al. A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng. 2016;4(1):762–787. doi:10.1016/j.jece.2015.12.016.
  • Gonzalez-Gil L, Papa M, Feretti D, et al. Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge? Water Res. 2016;102:211–220. doi:10.1016/j.watres.2016.06.025.
  • Kent J, Tay JH. Treatment of 17α-ethinylestradiol, 4-nonylphenol, and carbamazepine in wastewater using an aerobic granular sludge sequencing batch reactor. Sci Total Environ. 2019;652:1270–1278. doi:10.1016/j.scitotenv.2018.10.301.
  • Chtourou M, Mallek M, Dalmau M, et al. Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Saf Environ Prot. 2018;118:1–9. doi:10.1016/j.psep.2018.06.019.
  • Froehner S, Piccioni W, Machado KS, et al. Removal capacity of caffeine, hormones, and bisphenol by aerobic and anaerobic sewage treatment. Water Air Soil Pollut. 2011;216(1-4):463–471. doi:10.1007/s11270-010-0545-3.
  • Arfanis MK, Adamou P, Moustakas NG, et al. Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using Titania nanotubes. Chem Eng J. 2017;310:525–536.
  • Nakrst J, Bistan M, Tišler T, et al. Comparison of Fenton’s oxidation and ozonation for removal of estrogens. Water Sci Technol. 2011;63(10):2131–2137. doi:10.2166/wst.2011.339.
  • Oliveira TDD, Martini WS, Santos MD, et al. Caffeine oxidation in water by Fenton and Fenton-like processes: effects of inorganic anions and ecotoxicological evaluation on aquatic organisms. J Braz Chem Soc. 2015;26(1):178–184. doi:10.5935/0103-5053.20140237.
  • Jiang L, Gu Y, Guo H, et al. Efficient removal of 17-a-ethinylestradiol (EE2) from water using freshly formed Fe–Mn binary oxide. RSC Adv. 2017;7:23802–23811.
  • De Liz MV, de Lima RM, do Amaral B, et al. Suspended and immobilized TiO2 photocatalytic degradation of estrogens: potential for application in wastewater treatment processes. J Braz Chem Soc. 2018;29(2):380–389. doi:10.21577/0103-5053.20170151.
  • Dalmazio I, Santos L S, Lopes P, Eberlin R N, Augusti M R. Advanced Oxidation of Caffeine in Water: On-Line and Real-Time Monitoring by Electrospray Ionization Mass Spectrometry. Environ Sci Technol. 2005;39:5982–5988. doi:10.1021/es047985.
  • Rosal R, Rodríguez A, Perdigón-Melón JA, et al. Degradation of caffeine and identification of the transformation products generated by ozonation. Chemosphere. 2009;74(6):825–831. doi:10.1016/j.chemosphere.2008.10.010.
  • Gazenko O, Oturan N, Huguenot D, et al. Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: effects of operating parameters on removal efficiency. Sep Purif Technol. 2015;156:987–995.
  • DOUE. Directiva 91/271/CEE del Consejo, 21 de mayo de 1991, sobre el tratamiento de las aguas residuales urbanas; 1991.
  • DOF. NOM-001-SEMARNAT-1996. Norma Oficial Mexicana que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales; 1996.
  • DOF. NOM-002-SEMARNAT-1996. Norma Oficial Mexicana que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a los sistemas de alcantarillado urbano o municipal; 1996.
  • Bhatti Z A, Maqbool F, Malik A H, Mehmood Q. UASB reactor startup for the treatment of municipal wastewater followed by advanced oxidation process. Braz J Chem Eng. 2014;31(3):715–726. doi:10.1590/0104-6632.20140313s00002786.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.