365
Views
22
CrossRef citations to date
0
Altmetric
Articles

The role of silver nanoparticles biosynthesized by Anabaena variabilis and Spirulina platensis cyanobacteria for malachite green removal from wastewater

ORCID Icon, , &
Pages 4475-4489 | Received 02 Nov 2019, Accepted 30 Apr 2020, Published online: 23 May 2020

References

  • Dahoumane SA, Mechouet M, Wijesekera K, et al. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review. Green Chem. 2017;19(3):552–587.
  • Mira AK, Yousef AS, Abdullah A. Biosynthesis of silver nanoparticles by cyanobacterium Gloeocapsa sp. Int J Enhanc Res Sci Technol Eng. 2015;4(9):60–73.
  • Femila EE, Srimathi R, Charumathi D. Removal of malachite green using silver nanoparticles via adsorption and catalytic degradation. Int J Pharm Pharm Sci. 2014;6:579–583.
  • Govindaraju K, Basha SK, Kumar VG, et al. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci. 2008;43(15):5115–5122.
  • Mandal D, Bolander ME, Mukhopadhyay D, et al. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol. 2006;69(5):485–492.
  • Dotto GL, Cadaval TRS, Pinto LAA. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process Biochem. 2012;47(9):1335–1343.
  • Jyoti K, Singh A. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Eng Biotechnol. 2016;14(2):311–317.
  • Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. 2019;17(1):145–155.
  • Husain S, Sardar M, Fatma T. Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol. 2015;31:1279–1283.
  • Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir. 2007;23(5):2694–2699.
  • Brayner R, Barberousse H, Hemadi M, et al. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol. 2007;7(8):2696–2708.
  • Mahdieh M, Zolanvari A, Azimee A. Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica. 2012;19(3):926–929.
  • El-Sheekh MM, El-Kassas HY. Algal production of nano-silver and gold: their antimicrobial and cytotoxic activities: a review. J Genet Eng Biotechnol. 2016;14(2):299–310.
  • Patel V, Berthold D, Puranik P, et al. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep. 2015;5:112–119.
  • Singh G, Babele PK, Shahi SK, et al. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of Its antibacterial and antitumor activity. J Microbiol Biotechnol. 2014;24(10):1354–1367.
  • David L, Moldovan B. Green synthesis of biogenic silver nanoparticles for effcient catalytic removal of harmful organic dyes. Nanomaterials. 2020;10:202–218.
  • Singh J, Kumar V, Singh Jolly S, et al. Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J Ind Eng Chem. 2019;80:247–257.
  • Vanaja M, Paulkumar K, Baburaja M, et al. Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem Appl. 2014;2014, Article ID 742346, 8 pages.
  • Gao JF, Zhang Q, Wang JH, et al. Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules. Bioresour Technol. 2011;102(2):805–813.
  • Yang Y, Wang G, Wang B, et al. Biosorption of acid black 172 and Congo red from aqueous solution by nonviable Penicillium YW 01: kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresour Technol. 2011;102(2):828–834.
  • Li L, Lin ZZ, Peng AH, et al. Biomimetic ELISA detection of malachite green based on magnetic molecularly imprinted polymers. J Chromatogr B. 2016;1035:25–30.
  • Culp SJ, Beland FA. Malachite green: a toxicological review. J Am Coll Toxicol. 1996;15:219–238.
  • Ma Y, Ni M, Li S. Optimization of malachite green removal from water by TiO2 nanoparticles under UV Irradiation. Nanomaterials. 2018;8:428–439.
  • Gupta V. Application of low-cost adsorbents for dye removal – a review. J Environ Manage. 2009;90(8):2313–2342.
  • Srinivasan A, Viraraghavan T. Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage. 2010;91(10):1915–1929.
  • Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste andsewage water – a comprehensive review. Resour-Efficient Technol. 2016;2(4):175–184.
  • Hassan SA, Darwish AS, Gobara HM, et al. Interaction profiles in poly (amidoamine) dendrimer/montmorillonite or rice straw ash hybrids-immobilized magnetite nanoparticles governing their removal efficiencies of various pollutants in wastewater. J Mol Liq. 2017;230:353–369.
  • Salem MA, Bakr EA, El-Attar HG. Pt@ Ag and Pd@ Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution. Spectrochim Acta, Part A. 2018;188:155–163.
  • Agarwal P, Gupta R, Agarwal N. Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment. J Nanotechnol. 2019;2019, Article ID 7392713, 9 pages.
  • Raval NP, Shah PU, Shah NK. Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl Water Sci. 2017;7(7):3407–3445.
  • Stainer RY, Kunisawa R, Mandel M, et al. Purification and properties of unicellular blue-green algae (order chroococcales). Bacteriol Rev. 1971;35:171–205.
  • Desikachary T. Cyanophyta. New Delhi: Indian Council of Agricultural Research; 1959. p. 686.
  • Rippka R, Deruelles J, Waterbury J, et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology. 1979;111(1):1–61.
  • Zarrouk C. Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis, University of Paris,France., 1966.
  • Liu X, Atwater M, Wang J, et al. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B. 2007;58(1):3–7.
  • Allam NG, Ismail GA, El-Gemizy WM, et al. Biosynthesis of silver nanoparticles by cell-free extracts from some bacteria species for dye removal from wastewater. Biotechnol Lett. 2019;41(3):379–389.
  • Aksu Z, Tezer S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem. 2005;40(3-4):1347–1361.
  • Piccin JS, Dotto GL, Vieira M, et al. Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan. J Chem Eng Data. 2011;56(10):3759–3765.
  • Barrena R, Casals E, Colon J, et al. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 2009;75(7):850–857.
  • Tiquia S, Tam N, Hodgkiss I. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut. 1996;93(3):249–256.
  • MubarakAli D, Sasikala M, Gunasekaran M, et al. Biosynthesis and characterization of sliver nanoparticles using marine cyanobacterium Oscillatoria willel NTDM01. Dig J Nanomater Biostruct. 2011;6(2):385–390.
  • Omidi B, Hashemi SJ, Bayat M, et al. Biosynthesis of silver nanoparticles by Lactobacillus fermentum. Bull Environ Pharmacol Life Sci. 2014;3(12):186–192.
  • Cepoi L, Rudi L, Chiriac T, et al. Biochemical changes in cyanobacteria during the synthesis of silver nanoparticles. Can J Microbiol. 2015;61(1):13–21.
  • Lengke MF, Southam G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochim Cosmochim Acta. 2006;70(14):3646–3661.
  • Fu M, Li Q, Sun D, et al. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng. 2006;14(1):114–117.
  • Sharma G, Jasuja ND, Kumar M, et al. Biological synthesis of silver nanoparticles by cell-free extract of Spirulina platensis. J Nanotechnol. 2015;2015, Article ID 132675, 6 pages.
  • Anastopoulos I, Hosseini-Bandegharaei A, Fu J, et al. Use of nanoparticles for dye adsorption: review. J Dispers Sci Technol. 2018;39(6):836–847.
  • Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, et al. Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Front Chem. 2017;5(6):1–26.
  • Roy K, Sarkar CK, Ghosh CK. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci. 2015;5:953–959.
  • Wu FC, Tseng RL, Juang R. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J. 2009;150(2-3):366–373.
  • Abd-El-Kareem MS, Taha HM. Decolorization of malachite green and methylene blue by two microalgal species. Int J Chem Environ Eng. 2012;3:297–302.
  • Aksu Z. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 2005;40(3):997–1026.
  • Kumar KV, Sivanesan S, Ramamurthi VO. Adsorption of malachite green onto Pithophora sp., a fresh water algae: equilibrium and kinetic modeling. Process Biochem. 2005;40:2865–2872.
  • Rai J, Kumar D, Gaur JP. Sorption of malachite green (a cationic dye) and heavy metals by dead biomass of phormidesmis molle (cyanobacteria)-dominated mat. Water Environ J. 2019;33:50–61.
  • Dutka B. Short-term root elongation toxicity bioassayMethods for toxicological analysis of waters, wastewaters and sediments. in B. Dutka (ed.). Ontario: National Water Research Institute, Environment Canada, Burlington, Ontario; 1989. p. 120–122.
  • Singh S, Chatterji S, Nandini PT, et al. Biodegradation of azo dye direct orange 16 by micrococcusluteus strain SSN2. Int J Environ Sci Technol. 2015;12(7):2161–2168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.