307
Views
3
CrossRef citations to date
0
Altmetric
Articles

An ultra-low detection limit gold(III) probe based on rhodamine-covalent hydrogel sensor

, , , &
Pages 1723-1731 | Received 19 May 2020, Accepted 08 Nov 2020, Published online: 07 Dec 2020

References

  • Canda L, Heput T, Ardelean E. Methods for recovering precious metals from industrial waste. IOP Conf. Ser.: Mater.Sci. Eng. 2016;106 (012020):1–8.
  • Navarro M. Gold complexes as potential anti-parasitic agents. Coord Chem Rev. 2009;253:1619–1626.
  • Claus P. Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A. 2005;291:222–229.
  • Goodman P. Current and future uses of gold in electronics. Gold Bul. 2002;35:21.
  • Jung HS, Verwilst P, Kima WY, et al. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev. 2016;45:1242–1256.
  • Fukuhara G. Analytical supramolecular chemistry: colorimetric and fluorimetric chemosensors. J. Photochem. Photobiol. C. 2020;42 (100340):1–25.
  • Chang C, Zhang L, Zhou J, et al. Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr. Polym. 2010;82:122–127.
  • Hong W, Li W, Hu X, et al. Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. J. Mater. Chem. 2011;21:17193–17201.
  • Zargoosh K, Babadi F. Highly selective and sensitive optical sensor for determination of Pb2+ and Hg2+ ions based on the covalent immobilization of dithizone on agarose membrane. Spectrochimacta a. 2015;137:105–110.
  • Alizadeh K, Hashemi MR, Parooi PR, et al. A new Schiff's base ligand immobilized agarose membrane optical sensor for selective monitoring of mercury ion. J. Hazard. Mater. 2010;186(2-3):1794–1800.
  • Kim HN, Lee MH, Kim HJ, et al. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 2008;37(8):1465–1472.
  • Kaewtong C, Noiseephum J, Uppa Y, et al. A reversible Em-FRET rhodamine-based chemosensor for carboxylate anions using a ditopic receptor strategy. New J. Chem. 2010;34:1104–1108.
  • Kaewtong C, Wanno B, Uppa Y, et al. Facile synthesis of rhodamine-based highly sensitive and fast responsive colorimetric and off-on fluorescent reversible chemosensors for Hg2+: preparation of a fluorescent thin film sensor. Dalton Trans. 2011;46:12578–12583.
  • Niamsa N, Kaewtong C, Srinonmuang V, et al. Hybrid organic-inorganic nanomaterial sensors for selective detection of Au3+ using rhodamine-based modified polyacrylic acid (PAA)-coated FeNPs. Polym. Chem. 2013;4:3039–3046.
  • Kaewtong C, Niamsa N, Wanno B, et al. Optical chemosensors for Hg2+ from terthiopheneappended rhodamine derivatives: FRET basedmolecular and in situ hybrid gold nanoparticlesensors. New J. Chem. 2014;38:3831–3839.
  • Kaewtong C, Uppa Y, Srisa-ard M, et al. Inkpen-printed reusable colorimetric sensors for detection of Hg(II). RSC Adv. 2014;4:46145–46151.
  • Kaewtong C, Niamsa N, Pulpoka B, et al. Reversible sensing of aqueous mercury using a rhodamine-appended polyterthiophene network on indium tin oxide substrates. RSC Adv. 2014;4:52235–52240.
  • Kaewtong C, Pulpoka B, Tuntulani T. Reversible fluorescent and colorimetric rhodamine based chemosensor of Cu2+ contact ion-pairs using a ditopic receptors. Dyes Pigm. 2015;123:204–211.
  • Taweetanavanich T, Wanno B, Tuntulani T, et al. A pH optical and fluorescent sensor based on rhodamine modifiedon activated cellulose paper. J Chin Chem Soc. 2019;66:493–499.
  • Kampaengsri S, Wanno B, Tuntulani T, et al. Gold sensing with rhodamine immobilized hydrogel-based colorimetric sensor. Environ. Technol. 2019;41(23):3016–3022.
  • Gholivand MB, Abolghasemi MM. Preparation of a renewable sulfide-selective flow through an optical sensor based on immobilization of methylene blue on an agarose membrane. Chemija. 2012;23:30–35.
  • Meena R, Oza MD, Siddhanta A. Facile synthesis of fluorescent polysaccharides: Cytosine grafted agarose and κ-carrageenan. Carbohydr. Polym. 2011;87:1971–1979.
  • Trivedi TJ, Rao KS, Kumar A. Facile preparation of agarose–chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol–gel transition. Green Chem 2014;16:320–330.
  • Dukali RM, Radović IM, Stojanović DB, et al. Electrospinning of the laser dye rhodAMine B-doped poly(methyl methacrylate) nanofibers. J. Serb. Chem. Soc. 2014;79:867–880.
  • Samiey B, Ashoori F. Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol. Chem. Cent. J. 2012;6:14.
  • Thürmer MB, Diehl CE, Brum FJB, et al. Preparation and characterization of hydrogels with potential for use as biomaterials. Mater. Res. 2014;17:109–113.
  • Pipatchanchai T, Srikulkit K. Hydrophobicity modification of woven cotton fabric by hydrophobic fumed silica coating. J. Sol-Gel Sci Technol. 2007;44:119–123.
  • Assis OBG. Braz J Chem Eng 2003;20(3):339–342.
  • Kaewtong C, Kampaengsri S, Pulpoka B, et al. Solvatochromic-based sensor for chromium (III) in real systems. New J. Chem. 2018;42:9930–9934.
  • Avudaiappan G, Anjaly KJ, Letcy VT, et al. A novel dendritic polymer based turn- off fluorescence sensor for the selective detection of cyanide ion in aqueous medium. React. Funct. Polym. 2019;137:71–18.
  • Kaewtong C, Kampaengsri S, Singhana B, et al. Highly selective detection of Au3+ using rhodamine-based modified polyacrylic acid (PAA)-coated ITO. Dyes Pigm. 2017;141:277–285.
  • Shams PM, Sadjadi MS, Banaei A. A study of the influence of percentage of copper on the structural and optical properties of Au-Cu nanoparticle. Nanochem Res. 2016;1(2):143–149.
  • Chansri P, Wanno B, Keawwangchai S, et al. Spray coating thin polymeric sensor films for Au3+. J. Appl. Polym. Sci. 2020;137 (48273):1–10.
  • Liu LH, Wang AX, Wang G, et al. A naphthopyran-rhodamine based fluorescent and colorimetric chemosensor for recognition of common trivalent metal ions and Cu2+ ions. Sens Actuators B Chem. 2015;215:388–395.
  • Chen L, Lu W, Wang X, et al. A highly selective and sensitive colorimetric sensor for iodide detection based on anti-aggregation of gold nanoparticles. Sens Actuators B Chem. 2013;182:482–488.
  • Yuan Z, Cai N, Du Y, et al. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal Chem. 2014;86:419–426.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., B: Condens. Matter Mater. Phys. 1988;37:785–789.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, Revision E.01. Wallingford (CT): Gaussian Inc.; 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.