191
Views
3
CrossRef citations to date
0
Altmetric
Articles

Removal efficiency of As(III) from aqueous solutions using natural and Fe(III) modified bentonites

, ORCID Icon, &
Pages 3728-3741 | Received 29 Oct 2020, Accepted 13 May 2021, Published online: 02 Jun 2021

References

  • Litter MI, Ingallinella AM, Olmos V, et al. Arsenic in Argentina: occurrence, human health, legislation and determination. Sci Total Environ. 2019;676:756–766. doi:10.1016/J.SCITOTENV.2019.04.262.
  • Sanaei L, Tahmasebpour M, Khatamian M, et al. Arsenic removal from aqueous solutions using Fe3O4-NaA zeolite: experimental and modeling investigations. J Mech Eng. 2020;5(1):1–20.
  • Kobya M, Soltani RDC, Omwene PI, et al. A review on decontamination of arsenic-contained water by electrocoagulation: reactor configurations and operating cost along with removal mechanisms. Environ Technol Innov. 2020;17:1–27. doi:10.1016/j.eti.2019.100519.
  • Hashim MA, Kundu A, Mukherjee S, et al. Arsenic removal by adsorption on activated carbon in a rotating packed bed. J Water Process Eng. 2019;1-8:100591. doi:10.1016/j.jwpe.2018.03.006.
  • Jain CK, Ali I. Arsenic: occurrence, toxicity and speciation techniques. Water Res. 2000;34:4304–4312. doi:10.1016/S0043-1354(00)00182-2.
  • Sobhanardakani S. Arsenic health risk assessment through groundwater drinking (case study: Qaleeh Shahin agricultural region, Kermanshah Province, Iran). Pollution. 2018;4:77–82.
  • Sobhanardakani S. Health risk assessment of inorganic arsenic through groundwater drinking pathway in some agricultural districts of hamedan. West of Iran Avicenna J Environ Heal Eng. 2018;5:73–77. doi:10.15171/ajehe.2018.10.
  • Flora SJS. Preventive and therapeutic strategies for acute and chronic human arsenic exposure. In: Srivastava S, editor. Arsenic in drinking water and food. Singapore: Springer; 2020. p. 341–370.
  • Lenoble V, Bouras O, Deluchat V, et al. Arsenic adsorption onto pillared clays and iron oxides. J Colloid Interface Sci. 2002;255:52–58. doi:10.1006/jcis.2002.8646.
  • Almasri DA, Rhadfi T, Muataz AA, et al. High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem Eng J. 2018;335:1–12. doi:10.1016/J.CEJ.2017.10.031.
  • Asere TG, Stevens C V, Du Laing G. Use of (modified) natural adsorbents for arsenic remediation: a review. Sci Total Environ. 2019;676:706–720. doi:10.1016/J.SCITOTENV.2019.04.237.
  • Litter MI, Morgada ME, Bundschuh J. Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut. 2010;158:1105–1118. doi:10.1016/J.ENVPOL.2010.01.028.
  • García-Carvajal C, Villarroel-Rocha J, Curvale D, et al. Arsenic (V) removal from aqueous solutions using natural clay ceramic monoliths. Chem Eng Commun. 2019;206:1451–1462. doi:10.1080/00986445.2018.1564910.
  • Nidheesh PV, Karim AV, Anantha Singh TS, et al. Mechanism of treatment methods of arsenic-contaminated water. In: Hasanuzzaman M, Nahar KFM, editor. Mechanisms of arsenic toxicity and tolerance in plants. Singapore: 2018. p. 405–455.
  • Vaclavikova M, Gallios GP, Hredzak S, et al. Removal of arsenic from water streams: an overview of available techniques. Clean Technol Environ Policy. 2008;10:89–95. doi:10.1007/s10098-007-0098-3.
  • Litter MI. Actualización La problemática del arsénico en la Argentina : el HACRE. Rev Soc Argent Endocrinol Ginecol Reprod. 2010;XVII:5–10.
  • Baigorria E, Cano LA, Alvarez VA. Nanoclays as eco-friendly adsorbents of arsenic for water purification. In: Kharissova OV, Martínez LMT, Kharisov BI, editor. Handbook of nanomaterials and nanocomposites for energy and environmental applications. Cham: Springer International Publishing; 2020. p. 1–17.
  • Zhang X, Yang Y, Huang W, et al. g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater Res Bull. 2018;99:349–358. doi:10.1016/j.materresbull.2017.11.028.
  • Chen J, Zhang X, Bi F, et al. A facile synthesis for uniform tablet-like TiO2/C derived from materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J Colloid Interface Sci. 2020;571:275–284. doi:10.1016/j.jcis.2020.03.055.
  • Wang Y, Yu L, Wang R, et al. Reactivity of carbon spheres templated Ce/LaCo0.5Cu0.5O3 in the microwave induced H2O2 catalytic degradation of salicylic acid: characterization, kinetic and mechanism studies. J Colloid Interface Sci. 2020;574:74–86. doi:10.1016/j.jcis.2020.04.042.
  • Zhong Z, Li M, Fu J, et al. Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-fenton degradation of thiacloprid. Chem Eng J. 2020;395:1–14. doi:10.1016/j.cej.2020.125184.
  • Zandipak R, Sobhanardakani S. Synthesis of NiFe2O4 nanoparticles for removal of anionic dyes from aqueous solution. Desalin Water Treat. 2016;57:11348–11360. doi:10.1080/19443994.2015.1050701.
  • Ghoochian M, Panahi HA, Sobhanardakani S, et al. Synthesis and application of Fe3O4/SiO2/thermosensitive/PAMAM-CS nanoparticles as a novel adsorbent for removal of tamoxifen from water samples. Microchem J. 2019;145:1231–1240. doi:10.1016/j.microc.2018.12.004.
  • Baigorria E, Cano LA, Sanchez LM, et al. Bentonite-composite polyvinyl alcohol/alginate hydrogel beads: preparation, characterization and their use as arsenic removal devices. Environ Nanotechnol Monit Manag. 2020;14:1–8.
  • Yang Y, Zheng Z, Zhang D, et al. Response surface methodology directed adsorption of chlorate and chlorite onto MIEX resin and study of chemical properties. Environ Sci Water Res Technol. 2020;6:2454–2464.
  • Haque N, Morrison G, Cano-Aguilera I, et al. Iron-modified light expanded clay aggregates for the removal of arsenic(V) from groundwater. Microchem J. 2008;88:7–13. doi:10.1016/j.microc.2007.08.004.
  • Goh KH, Lim TT, Dong Z. Enhanced arsenic removal by hydrothermally treated nanocrystalline MG/AL layered double hydroxide with nitrate intercalation. Environ Sci Technol. 2009;43:2537–2543. doi:10.1021/es802811n.
  • Talebzadeh F, Sobhanardakani S, Zandipak R. Effective adsorption of As(V) and V(V) ions from water samples using 2,4-dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles. Sep Sci Technol. 2017;52:622–633. doi:10.1080/01496395.2016.1262873.
  • Linh NLM, Hoang Van D, Duong T, et al. Adsorption of arsenate from aqueous solution onto modified Vietnamese bentonite. Adv Mater Sci Eng. 2019;2019:1–13. doi:10.1155/2019/2710926.
  • Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano. 2010;4:3979–3986. doi:10.1021/nn1008897.
  • Sadeghi MH, Tofighy MA, Mohammadi T. One-dimensional graphene for efficient aqueous heavy metal adsorption: rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere. 2020;253:1–8. doi:10.1016/j.chemosphere.2020.126647.
  • Pillai P, Kakadiya N, Timaniya Z, et al. Removal of arsenic using iron oxide amended with rice husk nanoparticles from aqueous solution. Mater Today Proc. 2020;28:830–835. doi:10.1016/j.matpr.2019.12.307.
  • Vojoudi H, Badiei A, Bahar S, et al. Post-modification of nanoporous silica type SBA-15 by bis(3-triethoxysilylpropyl)tetrasulfide as an efficient adsorbent for arsenic removal. Powder Technol. 2017;319:271–278. doi:10.1016/j.powtec.2017.06.028.
  • Liu R, Zhu L, He Z, et al. Simultaneous removal of arsenic and fluoride by freshly-prepared aluminum hydroxide. Colloids Surfaces A Physicochem Eng Asp. 2015;466:147–153. doi:10.1016/j.colsurfa.2014.10.007.
  • Cho DW, Jeon BH, Chon CM, et al. A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V). Chem Eng J. 2012;200–202:654–662. doi:10.1016/j.cej.2012.06.126.
  • Qi J, Zhang G, Li H. Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresour Technol. 2015;193:243–249. doi:10.1016/j.biortech.2015.06.102.
  • Thanawatpoontawee S, Imyim A, Praphairaksit N. Iron-loaded zein beads as a biocompatible adsorbent for arsenic(V) removal. J Ind Eng Chem. 2016;43:127–132. doi:10.1016/j.jiec.2016.07.058.
  • Yazdani MR, Bhatnagar A, Vahala R. Synthesis, characterization and exploitation of nano-TiO2/feldspar-embedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As). Chem Eng J. 2017;316:370–382. doi:10.1016/j.cej.2017.01.121.
  • Wang Y, Du B, Wang J, et al. Synthesis and characterization of a high capacity ionic modified hydrogel adsorbent and its application in the removal of Cr(VI) from aqueous solution. J Environ Chem Eng. 2018;6:6881–6890. doi:10.1016/j.jece.2018.10.048.
  • Zhang X, Shi X, Chen J, et al. The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene. J Environ Chem Eng. 2019;7:1–8. doi:10.1016/j.jece.2019.103405.
  • Tuutijärvi T, Lu J, Sillanpää M, et al. As(V) adsorption on maghemite nanoparticles. J Hazard Mater. 2009;166:1415–1420. doi:10.1016/J.JHAZMAT.2008.12.069.
  • D’Amico DA, Ollier RP, Alvarez VA, et al. Modification of bentonite by combination of reactions of acid-activation, silylation and ionic exchange. Appl Clay Sci. 2014;99:254–260. doi:10.1016/j.clay.2014.07.002.
  • Chaudhuri S D, Mandal A, Dey A, et al. Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel. Appl Clay Sci. 2020;185:1–11. doi:10.1016/j.clay.2019.105405.
  • Hass Caetano Lacerda E, Monteiro FC, Kloss JR, et al. Bentonite clay modified with Nb2O5: an efficient and reused photocatalyst for the degradation of reactive textile dye. J Photochem Photobiol A Chem. 2020;388:1–32. doi:10.1016/j.jphotochem.2019.112084.
  • Manjanna J, Kozaki T, Sato S. Fe(III)-montmorillonite: basic properties and diffusion of tracers relevant to alteration of bentonite in deep geological disposal. Appl Clay Sci. 2009;43:208–217. doi:10.1016/J.CLAY.2008.09.007.
  • Filipská P, Zeman J, Všianský D, et al. Key processes of long-term bentonite-water interaction at 90°C: mineralogical and chemical transformations. Appl Clay Sci. 2017;150:234–243. doi:10.1016/j.clay.2017.09.036.
  • Mohapatra D, Mishra D, Chaudhury GR, et al. Arsenic(V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. J Environ Sci Heal Part A. 2007;42:463–469. doi:10.1080/10934520601187666.
  • Buzetzky D, Tóth NC, Nagy NM, et al. Application of modified bentonites for arsenite (III) removal from drinking water. Period Polytech Chem Eng. 2018;63:113–121. doi:10.3311/PPch.12197.
  • Servicio Geologico Minero Argentino. (2004). Minerales Industriales de la República Argentina [cited 2018 Jun 1]. https://repositorio.segemar.gov.ar/handle/308849217/2747?show=full. https://repositorio.segemar.gov.ar/bitstream/handle/308849217/2747/Minerales_Industriales_Argentina.pdf?sequence=1&isAllowed=y.
  • Mendoza R. (2011). Argentina es la segunda productora mundial de bentonita. MiningPress; [cited 2020 Feb 2]. http://miningpress.com/nota/62080/argentina-es-la-segunda-productora-mundial-de-bentonita.
  • Redacción Diario Río Negro. (2019). Río Negro a la cabeza de la producción de bentonita. D. Río Negro; [cited 2020 Feb 2]. https://www.rionegro.com.ar/rio-negro-a-la-cabeza-de-la-produccion-de-bentonita-928660/.
  • Gamba M. Montmorillonitas modificadas para la retención de pesticidas poscosecha (imazalil y tiabendazol). La Plata: Universidad Nacional de La Plata; 2017.
  • Hou MF, Ma CX, Zhang WD, et al. Removal of rhodamine B using iron-pillared bentonite. J Hazard Mater. 2011;186:1118–1123. doi:10.1016/j.jhazmat.2010.11.110.
  • Brunauer S, Emmett PH, Teller E. Adsoption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319. doi:10.1021/ja01269a023.
  • Rege SU, Yang RT. Corrected Horvath-Kawazoe equations for pore-size distribution. J AlChE. 2000;46:734–750. doi:10.1002/aic.690460408.
  • Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87:1051–1069.
  • Gregg SJ, Sing KSW, Salzberg HW. Adsorption, surface areaand porisity. J Electrochem Soc. 1967;114(279C), 279–279. doi:10.1149/1.2426447.
  • Rouquerol F, Rouquerol J, Sing KSW, et al. Adsoption by poweders and porous solids. 2nd ed. Marseilles, France: Academic Press; 2013.
  • Lenoble V, Deluchat V, Serpaud B, et al. Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta. 2003;61:267–276. doi:10.1016/S0039-9140(03)00274-1.
  • Ijagbemi CO, Baek M-H, Kim D-S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J Hazard Mater. 2009;166:538–546. doi:10.1016/j.jhazmat.2008.11.085.
  • Li J, Dong S, Wang Y, et al. Nitrate removal from aqueous solutions by magnetic cationic hydrogel: effect of electrostatic adsorption and mechanism. J Environ Sci. 2020;91:177–188. doi:10.1016/j.jes.2020.01.029.
  • Langmuir D. Aqueous environmental geochemistry. 1st Ed New Jersey: Prentice-Hall; 1997.
  • Wang J, Guo X. Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater. 2020;390:1–18. doi:10.1016/j.jhazmat.2020.122156.
  • Chikkamath S, Patel MA, Kar AS, et al. Sorption of Cs(I) on Fe-montmorillonite relevant to geological disposal of HLW. Radiochim Acta. 2019;107:387–396. doi:10.1515/ract-2018-3016.
  • Wilson J, Cressey G, Cressey B, et al. The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochim Cosmochim Acta. 2006;70:323–336. doi:10.1016/j.gca.2005.09.023.
  • Schlegel ML, Bataillon C, Benhamida K, et al. Metal corrosion and argillite transformation at the water-saturated, high-temperature iron–clay interface: a microscopic-scale study. Appl Geochemistry. 2008;23:2619–2633. doi:10.1016/j.apgeochem.2008.05.019.
  • Doff DH, Gangas NHJ, Allan JEM, et al. Preparation and characterization of iron oxide pillared montmorillonite. Clay Miner. 1988;23:367–377. doi:10.1180/claymin.1988.023.4.04.
  • Borgnino L, Avena MJ, De Pauli CP. Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids Surfaces A Physicochem Eng Asp. 2009;341:46–52. doi:10.1016/j.colsurfa.2009.03.037.
  • Fang J, Huang X, Zhang Q, et al. Study on the surface speciation of Fe-pillared montmorillonite and mechanism of its photocatalytic effect on degradation of ionic dye rhodamine-B. Appl Surf Sci. 2016;360:994–998. doi:10.1016/j.apsusc.2015.11.102.
  • Yang Y, Zhu R, Chen Q, et al. A novel multifunctional adsorbent synthesized by modifying acidified organo-montmorillonite with iron hydroxides. Appl Clay Sci. 2020;185:1–10. doi:10.1016/j.clay.2019.105420.
  • Luengo MA, Carvalho HM, Ladriere J, et al. Fe (III)-pillared montmorillonites: preparation and physical characterization. Clay Miner. 1989;24:495–504. doi:10.1180/claymin.1989.024.3.03.
  • Luengo C, Puccia V, Avena M. Arsenate adsorption and desorption kinetics on a Fe (III)-modified montmorillonite. J Hazard Mater. 2011;186:1713–1719. doi:10.1016/j.jhazmat.2010.12.074.
  • Chen JP, Hausladen MC, Yang RT. Delaminated Fe2O3-pillared clay: its preparation, characterization, and activities for selective catalytic reduction of No by NH3. J Catal. 1995;151:135–146. doi:10.1006/jcat.1995.1016.
  • Dramé H. Cation exchange and pillaring of smectites by aqueous Fe nitrate solutions. Clays Clay Miner. 2005;53:335–347. doi:10.1346/CCMN.2005.0530402.
  • Chen G, Han B, Yan H. Interaction of cationic surfactants with iron and sodium montmorillonite suspensions. J Colloid Interface Sci. 1998;201:158–163. doi:10.1006/jcis.1998.5408.
  • Tabak A, Afsin B, Caglar B, et al. Characterization and pillaring of a Turkish bentonite (Resadiye). J Colloid Interface Sci. 2007;313:5–11. doi:10.1016/J.JCIS.2007.02.086.
  • Sorieul S, Allard T, Wang LM, et al. Radiation-stability of smectite. Environ Sci Technol. 2008;42:8407–8411. doi:10.1021/es800766b.
  • Chang B, Guo Y, Li Y, et al. Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance. J Mater Chem A. 2015;3:9565–9577. doi:10.1039/C5TA00867K.
  • Han Y, Liu M, Li K, et al. Cu2o mediated synthesis of metal–organic framework UiO-66 in nanometer scale. Cryst Growth Des. 2017;17:685–692. doi:10.1021/acs.cgd.6b01533.
  • Rocha J V, Barrera D, Sapag K. Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous Mesoporous Mater. 2014;200:68–78. doi:10.1016/J.MICROMESO.2014.08.017.
  • Villa FAA, Anaguano AH. Determination of the point of zero charge and isoelectric point of two agricultural wastes and their application in the removal of colorants. Rev Investig Agrar y Ambient. 2013;4:27–36.
  • Manning BA, Goldberg S. Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environ Sci Technol. 1997;31:2005–2011. doi:10.1021/es9608104.
  • Goldberg S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J. 2002;66:413–421. doi:10.2136/sssaj2002.4130.
  • Ramesh A, Hasegawa H, Maki T, et al. Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep Purif Technol. 2007;56:90–100. doi:10.1016/j.seppur.2007.01.025.
  • Shokri E, Yegani R. Novel adsorptive mixed matrix membrane by incorporating modified nanoclay with amino acid for removal of arsenic from water. J Water Environ Nanotechnol. 2017;2:88–95.
  • Bilgiç C, Topaloğlu Yazıcı D, Karakehya N, et al. Surface and interface physicochemical aspects of intercalated organo-bentonite. Int J Adhes Adhes. 2014;50:204–210. doi:10.1016/j.ijadhadh.2014.01.033.
  • Oszkó A, Kiss J, Kiricsi I. XPS investigations on the feasibility of isomorphous substitution of octahedral Al3+ for Fe3+ in Keggin ion salts. Phys Chem Chem Phys. 1999;1:2565–2568. doi:10.1039/A901173K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.