251
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Enhanced visible-light photocatalytic activity and antibacterial behaviour on fluorine and graphene synergistically modified TiO2 nanocomposite for wastewater treatment

, , &
Pages 3821-3834 | Received 06 Nov 2020, Accepted 21 May 2021, Published online: 11 Jun 2021

References

  • Samarghandi MR, Dargahi A, Shabanloo A, et al. Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arab J Chem. 2020;13:6847–6864. doi:10.1016/j.arabjc.2020.06.038
  • Yadav DN, Kishore KA, Saroj D. A study on removal of methylene blue dye by photo catalysis integrated with nanofiltration using statistical and experimental approaches. Environ Technol. 2020: 1720303. doi:10.1080/09593330.2020.1720303
  • Kim SP, Choi MY, Choi HC. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater Res Bull 2016;74:85–89. doi:10.1016/j.materresbull.2015.10.024
  • Klosowski EM, Souza BTL, Mito MS, et al. The photodynamic and direct actions of methylene blue on mitochondrial energy metabolism: a balance of the useful and harmful effects of this photosensitizer. Free Radical Bio Med. 2020;153:34–53. doi:10.1016/j.freeradbiomed.2020.04.015
  • Mckinney CW, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol. 2012;46:13393. doi:10.1021/es303652q
  • Farrell C, Hassard F, Jefferson B, et al. Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy. Sci Total Environ. 2018;624:638–647. doi:10.1016/j.scitotenv.2017.12.173
  • Zhang Y, Wong JWC, Liu P, et al. Heterogeneous photocatalytic degradation of phenanthrene in surfactant solution containing TiO2 particles. J Hazard. Mater. 2011;191:136–143. doi:10.1016/j.jhazmat.2011.04.059
  • Tiwari A, Shukla A, Lalliansanga, et al. Synthesis and characterization of Ag0(NPs)/TiO2 nanocomposite: insight studies of triclosan removal from aqueous solutions. Environ Technol. 2020;41:3500–3514. doi:10.1080/09593330.2019.1615127
  • Li H, Zhong K, Zhai ZJ. A new double-skin fade system integrated with TiO2 plates for decomposing BTEX. Build Environ. 2020;180:107037. doi:10.1016/j.buildenv.2020.107037
  • Mu J, Luo DY, Miao H, et al. Synergistic wide spectrum response and directional carrier transportation characteristics of Se/SnSe2/TiO2 multiple heterojunction for efficient photoelectrochemical simultaneous degradation of Cr (Vi) and RhB. Appl Surf Sci. 2020;542:148673. doi:10.1016/j.apsusc.2020.148673
  • Dette C, Perez-Osorio MA, Kley CS, et al. Tio2 anatase with a bandgap in the visible region. Nano Lett 2014;14:6533–6538. doi:10.1021/nl503131s
  • Ballari MM, Carballada J, Minen RI, et al. Visible light TiO2 photocatalysts assessment for air decontamination. Process Saf Environ. 2016;101:124–133. doi:10.1016/j.psep.2015.08.003
  • Khalid NR, Mazia U, Tahir MB, et al. A reusable visible driven N and C-N doped TiO2 magnetic nanocomposites for photodegradation of direct red 16 azo dye in water and wastewater. Environ Technol. 2020: 1825530. doi:10.1080/09593330.2020.1825530
  • Zhang YF, Shen HY, Liu YH. Cooperation among N, F and Fe in tri-doped TiO2 photocatalyst. Res Chem Intermed 2016;42:6265–6287. doi:10.1007/s11164-016-2460-8
  • Jiang QW, Ding C, Liu YH. A type of novel glass for indoor air cleaning under visible-light. Build Environ. 2018;137:226–234. doi:10.1016/j.buildenv.2018.04.013
  • Rao NV, Reddy LN, Kumari MM, et al. Photocatalytic recovery of H2 from H2S containing wastewater: surface and interface control of photo-excitons in Cu2S@TiO2 core-shell nanostructures. Appl Catal B Environ. 2019;254:174–185. doi:10.1016/j.apcatb.2019.04.090
  • Sepideh P, Duan JZ, Duan F, et al. New effects of TiO2 nanotube/g-C3N4 hybrids on the corrosion protection performance of epoxy coatings. J Mol Liq. 2020;317:114214. doi:10.1016/j.molliq.2020.114214
  • Niu B, Xu Z. From E-waste to Nb-Pb co-doped and Pd-loaded TiO2/BaTiO3 heterostructure: highly efficient photocatalytic performance. ChemSusChem. 2019;12:2819–2828. doi:10.1002/cssc.201900071
  • Gao Y, Lockart M, Kispert LD, et al. Photo-induced charge separation in hydroxycoumarins on TiO2 and F-TiO2. Dalton Trans. 2019;48:10881–10891. doi:10.1039/C9DT01455A
  • Bhanvase BA, Shende TP, Sonawane SH. A review on graphene-TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ Technol Rev. 2017;6:1–14. doi:10.1080/21622515.2016.1264489
  • Yang X, Chen C, Li J, et al. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. Rsc Adv. 2012;2:8821–8826. doi:1.10.1039/c2ra20885g
  • Liu XL, Ma R, Wang XX, et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ Pollut. 2019;252:62–73. doi:10.1016/j.envpol.2019.05.050
  • Nasr M, Balme S, Eid C, et al. Enhanced visible-light photocatalytic performance of electrospun rGO/TiO2 composite nanofibers. J Phys Chem C. 2017;121:261–269. doi:10.1021/acs.jpcc.6b08840
  • Huang Y, Wang H, Huang K, et al. Degradation kinetics and mechanism of 3-chlorobenzoic acid in anoxic water environment using graphene/TiO2 as photocatalyst. Environ Technol. 2020;41:2165–2179. doi:10.1080/09593330.2018.1556741
  • Afzal MJ, Pervaiz E, Farrukh S, et al. Highly integrated nanocomposites of rGO/TiO2 nanotubes for enhanced removal of microbes from water. Environ Technol. 2019;40:2567–2576. doi:10.1080/09593330.2018.1447021
  • Yan C, Teng N, Wu KX, et al. Antibacterial activity and mechanism of titania composite respond to visible light. Guangzhou Chem Ind. 2015;13:103–105. doi:10.3969/j.issn.1001-9677.2015.13.030
  • Dhanasekar M, Jenefer V, Nambiar RB, et al. Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their pva based polymer nanocomposite films. Mater Res Bull. 2017;97:238–243. doi:10.1016/j.materresbull.2017.08.056
  • Fernández-Ibáñez P, Polo-López MI, Wadhwa S, et al. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J. 2015;261:36–44. doi:10.1016/j.cej.2014.06.089
  • Akhavan O, Ghaderi E. Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale. 2013;5:10316. doi:10.1039/c3nr02161k
  • Reddy K, Manorama S, Reddy A. Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys. 2003;78:239–245. doi:10.1016/S0254-0584(02)00343-7
  • Jiang QW, Hou JL, Liu J, et al. Visible photocatalysis of a building glass coated with N-F-TiO2/rGO. Environ Sci Eng. 2020;1:181–190. doi:10.1007/978-981-13-9520-8_20
  • Sivasankaran S. Optimization and analysis of dry sliding wear behavior of stir casted AlSi6Cu4-TiO2 composite using central composite design. Surf Rev Lett. 2019;26:1–11. doi:10.1142/S0218625X19500525
  • Jiang QW, Qi TT, Yang T, et al. Ceramic tiles for photocatalytic removal of NO in indoor and outdoor air under visible light. Build Environ. 2019;158:94–103. doi:10.1016/j.buildenv.2019.05.014
  • Zhang Y, Pan C. Tio2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci. 2011;46:2622–2626. doi:10.1007/s10853-010-5116-x
  • Shio K, Yusuke A, Vequizo J, et al. Enhanced photocatalytic no x decomposition of visible-light responsive F-TiO2 /(N,C)-TiO2 by charge transfer between F-TiO2 and (N,C)-TiO2 through their doping levels. Appl Catal B Environ. 2018;238:358–364. doi:10.1016/j.apcatb.2018.07.038
  • Kim SJ, Lee K, Kim JH. Preparation of brookite phase TiO2 colloidal sol for thin film coating. Mater Lett. 2006;60(3):364–367. doi:10.1016/j.matlet.2005.08.054
  • Hezam M, Qaid SMH, Bedja IM, et al. Synthesis of pure brookite nanorods in a nonaqueous growth environment. Crystals (Basel). 2019;9:562. doi:10.3390/cryst9110562
  • Jiao Y, Zhao B, Chen F, et al. Insight into the crystal lattice formation of brookite in aqueous ammonia media: the electrolyte effect. CrystEngComm. 2011;13:4167–4173. doi:10.1039/C0CE00932F
  • Liu S, Yu J. Effect of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. In: H Yamashita, H Li, editor. Nanostructured photocatalysts: nanostructure science & technology. Cham.: Springer; 2016., pp. 187–200. doi:10.1007/978-3-319-26079-2_10
  • Zhi M, Huang W, Shi Q, et al. Enhanced electrochromic performance of mesoporous titanium dioxide/reduced graphene oxide nanocomposite film prepared by electrophoresis deposition. J Electrochem Soc. 2018;165:804–812. doi:10.1149/2.0451813jes
  • Zhang J, Xu X, Yang H, et al. The preparation and characterization of TiO2/r-GO/Ag nanocomposites and its photocatalytic activity in formaldehyde degradation. Environ Technol. 2021;42:193–205. doi:10.1080/09593330.2019.1625955
  • Zhang YF, Shen HY, Liu YH. Synergistic effects of F and Fe in co-doped TiO2 nanoparticles. J Nanopart Res. 2016;18:1–18. doi:10.1007/s11051-015-3258-0
  • Yang G, Wang T, Yang B, et al. Enhanced visible-light activity of F-N co-doped TiO2 nanocrystals via nonmetal impurity, Ti3+ ions and oxygen vacancies. Appl Sur Sci. 2013;287:135–142. doi:10.1016/j.apsusc.2013.09.094
  • Park J, Cho S, Kim W, et al. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets. ACS Appl Mater Interfaces. 2011;3:360–368. doi:10.1021/am100977p
  • Stankovich S, Dikin D, Piner R, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y. 2007;45:1558–1565. doi:10.1016/j.carbon.2007.02.034
  • Li C, Wang J, Feng S, et al. Low-temperature synthesis of heterogeneous crystalline TiO2-halloysite nanotubes and their visible light photocatalytic activity. J Mater Chem A. 2013;27:8045. doi:10.1039/c3ta11176h
  • Xue SY, Wu CZ, Pu SY, et al. Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations. Environ Pollut. 2019;250:338–345. doi:10.1016/j.envpol.2019.04.010
  • Huang Y, Ruan G, Ruan Y, et al. Hypercrosslinked porous polymers hybridized with graphene oxide for water treatment: dye adsorption and degradation. RSC Adv. 2018;8(24):13417–13422. doi:10.1039/C8RA01620H
  • Bae S, Kim S, Lee S, et al. Dye decolorization test for the activity assessment of visible light photocatalysts: realities and limitations. Catal Today. 2014;224:21–28. doi:10.1016/j.cattod.2013.12.019
  • Jia Y, Zhan SH, Zhou Q. Fabrication of TiO2-Bi2WO6 binanosheet for enhanced solar photocatalytic disinfection of E. Coli: insights on the mechanism. Acs Appl Mater Inter. 2016;8:6841–6851. doi:10.1021/acsami.6b00004
  • Ton NQ, Le TNT, Kim S, et al. High-efficiency photo-generated charges of ZnO/TiO2 heterojunction thin films for photocatalytic and antibacterial performance. J Nanosci Nanotechnol. 2020;20:2214–2222. doi:10.1166/jnn.2020.17306
  • Oh J, Chang Y, Kim Y, et al. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light. Phys Chem Chem Phys. 2016;18:10882–10886. doi:10.1039/C6CP00582A
  • Mamaghani AH, Haghighat F, Lee CS. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B Environ. 2017;203:247–269. doi:10.1016/j.apcatb.2016.10.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.