116
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effective carbon dioxide sorption by using phyllosilicate anchored poly(quaternary-ammoniumhydroxidemethyl styrene) nanocomposites

, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 3945-3955 | Received 08 Oct 2020, Accepted 16 May 2021, Published online: 20 Jun 2021

References

  • Llamas B, Navarrete B, Vega F, et al. Greenhouse gas emissions - carbon capture, storage and utilization. In: Llamas B, J Pous, editors. Greenhouse gases. London, United Kingdom: IntechOpen Publisher; 2016.
  • Anderson S, Newell R. Prospects for carbon capture and storage technologies. Annu Rev Environ Resour. 2004;29:109–142.
  • Sumida K, Rogow DL, Mason JA, et al. Carbon dioxide capture in metal-organic frameworks. Chem Rev. 2012;112(2):724–781.
  • Wilcox J. Carbon captures. New York: Springer; 2012.
  • Dutcher B, Fan M, Russell AG. Amine-based CO2 capture technology development from the beginning of 2013 - A review. ACS Appl Mater Interf. 2015;7(4):2137–2148.
  • Kenarsari SD, Yang D, Jiang G, et al. Review of recent advances in carbon dioxide separation and capture. RSC Adv. 2013;3(45):22739–22773.
  • D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Edit. 2010;49(35):6058–6082.
  • Duke MC, Ladewig B, Smart S, et al. Assessment of postcombustion carbon capture technologies for power generation. Front Chem Eng China. 2010;4(2):184–195.
  • Bhown AS, Freeman BC. Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol. 2011;45(20):8624–8632.
  • Kierzkowska AM, Pacciani R, Müller CR. CaO-based CO2 sorbents: from fundamentals to the development of New, Highly effective materials. Chem Sus Chem. 2013;6(7):1130–1148.
  • Gomes J, Santos S, Bordado J. Choosing amine-based absorbents for CO2 capture. Environ Technol. 2015;36(1):19–25.
  • Zhang S, Zhou Q, Jiang X, et al. Preparation and evaluation of nitrogen-tailored hierarchical meso-/micro-porous activated carbon for CO2 adsorption. Envrion Technol. 2020;41(27):3544–3553.
  • Nabhani N, Shojaie A. Application of nanotechnology and nanomaterial in CO2 capture enhancement. Appl Res J. 2016;2(9):379–383.
  • Lu H, Khan A, Pratsinis SE, et al. Flame-made durable doped-CaO nanosorbents for CO2 capture. Energ Fuel. 2009;23(2):1093–1100.
  • Cai H, Bao F, Gao J, et al. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified halloysite nanotubes. Environ Technol. 2015;36(10):1273–1280.
  • Lu W, Yuan D, Zhao D, et al. Porous polymer networks: synthesis, porosity, and applications in Gas storage/separation. Chem Mater. 2010;22(21):5964–5972.
  • Zhang M, Perry Z, Park J, et al. Stable benzimidazole-incorporated porous polymer network for carbon capture with high efficiency and Low cost. Polymer (Guildf). 2014;55(1):335–339.
  • Sun LB, Li AG, Liu XD, et al. Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture. J Mater Chem A. 2015;3(7):3252–3256.
  • Samanta P, Chandra P, Ghosh SK. Hydroxy-functionalized hyper-cross-linked ultra-microporous organic polymers for selective CO2 capture at room temperature. Beilstein J Org Chem. 2016;12:1981–1986.
  • Neti VSPK, Wu X, Deng S, et al. Selective CO2 capture in an imine linked porphyrin porous polymer. Polym Chem. 2013;4(17):4566–4569.
  • Zulfiqar S, Awan S, Karadas F, et al. Amidoxime porous polymers for CO2 capture. RSC Adv. 2013;3(38):17203–17213.
  • Manoranjan N, Won DH, Kim J, et al. Amide linked conjugated porous polymers for effective CO2 capture and separation. J CO2 Util. 2016;16:486–491.
  • Gu Y, Zhao J, Johnson JA. Polymer networks: from plastics and gels to porous frameworks. Angew Chem. 2020;59(13):5022–5049.
  • He H, Li W, Zhong M, et al. Reversible CO2 capture with porous polymers using the humidity swing. Energ Environ Sci. 2013;6(2):488–493.
  • Jin Y, Hawkins SC, Huynh CP, et al. Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energ Environ Sci. 2013;6(9):2591–2596.
  • Meng LY, Park SJ. Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon. J Colloid Interf Sci. 2012;366(1):125–129.
  • Liang Z, Fadhel B, Schneider CJ, et al. Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Micropor Mesopor Mat. 2008;111(1-3):536–543.
  • Aboudi J, Vafaeezadeh M. Efficient and reversible CO2 capture by amine functionalized-silica gel confined task-specific ionic liquid system. J Adv Res. 2015;6(4):571–577.
  • Sehaqui H, Galvez ME, Becatinni V, et al. Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose - polyethylenimine foams. Environ Sci Technol. 2015;49(5):3167–3174.
  • Mishra AK, Ramaprabhu S. Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J Mater Chem. 2012;22(9):3708–3712.
  • Mishra AK, Ramaprabhu S. Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate. RSC Adv. 2012;2(5):1746–1750.
  • Khader MM, Al-Marri MJ, Ali S, et al. Adsorption of CO2 on polyethyleneimine 10k - mesoporous silica sorbent: XPS and TGA studies. Am J Anal Chem. 2015;6:274–284.
  • Khdary NH, Abdelsalam ME. Polymer-silica nanocomposite membranes for CO2 capturing. Arab J Chem. 2020;30:557–567.
  • Guo H, Yan S, Zhao Y, et al. Influence of water vapor on cyclic CO2 capture performance in both carbonation and decarbonation stages for Ca-Al mixed oxide. Chem Eng J. 2019;359:542–551.
  • Kusworo TD, Kumoro AC, Budiyono B, et al. Enhancement of nanohybrid PES-nanosilica performance for CO2/CH4 separation through combined UV irradiation and thermal annealing treatments. J Eng Res. 2020;8(3):17–30.
  • Chanut N, Bourrelly S, Kuchta B, et al. Screening the effect of water vapour on gas adsorption performance: application to CO2 capture from flue gas in metal–organic frameworks. Chem Sus Chem. 2017;10:1–12.
  • Jiang X, Kong Y, Zhaoab Z, et al. Spherical amine grafted silica aerogels for CO2 capture. RSC Adv. 2020;10:25911.
  • Xu D, Xiao P, Zhang J, et al. Effects of water vapour on co2 capture with vacuum swing adsorption using activated carbon. Chem Eng J. 2013;230:64–72.
  • Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process-A second update. Aust J Chem. 2009;62(11):1402–1472.
  • Bartholome C, Beyou E, Bourgeat-Lami E, et al. Nitroxide-mediated polymerizations from silica nanoparticle surfaces: “graft from” polymerization of styrene using a triethoxysilyl-terminated alkoxyamine initiator. Macromolecules. 2003;36(21):7946.
  • Amelia R, Wu WD, Chen XD, et al. Assembly of magnetic microcomposites from low pH precursors using a novel micro-fluidic-jet-spray-dryer. Chem Eng Res Des. 2012;90(1):150–157.
  • Guo R, Chen X, Zhu X, et al. A facile strategy to fabricate covalently linked raspberry-like nanocomposites with pH and thermo tunable structures. RSC Adv. 2016;6(47):40991–41001.
  • Li Q, Yang J, Feng D, et al. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 2010;3(9):632–642.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.