169
Views
1
CrossRef citations to date
0
Altmetric
Articles

Assessing the impact of lime on chromium migration in soil caused by basic chromium sulfate in tannery

, &
Pages 1367-1378 | Received 30 Apr 2021, Accepted 30 Oct 2021, Published online: 02 Dec 2021

References

  • Agrawal A, Kumar V, Pandey BD. Remediation options for the treatment of electroplating and leather tanning effluent containing chromium-A review. Miner. Process Extr. Metall. Rev. 2006;27:99–130. doi:10.1080/08827500600563319.
  • Ye TT, Li HB, Wang ZX, et al. Transport and fate of hexavalent chromium in slag-soil system. Environ. Earth Sci. 2019;78:239. doi:10.1007/s12665-019-8245-9.
  • Pati A, Chaudhary R, Subramani S. A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues. Environ. Sci. Pollut. Res. 2014;21:11266–11282. doi:10.1007/s11356-014-3055-9.
  • Li J, Yang M, Jiang ZB. One-step solvothermal synthesis of N-doped TiO2 nanoparticles with high photocatalytic activity in the reduction of aqueous Cr(VI). Chin. Chem. Lett. 2014a;25:283–286. doi:10.1016/j.cclet.2013.11.021.
  • Raptis S, Gasparatos D, Economou-Eliopoulos M, et al. Chromium uptake by lettuce as affected by the application of organic matter and Cr(VI)-irrigation water: implications to the land use and water management. Chemosphere. 2018;210:597–606. doi:10.1016/j.chemosphere.2018.07.046.
  • Dhal B, Thatoi HN, Das NN, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013;250:272–291. doi:10.1016/j.jhazmat.2013.01.048.
  • Jobby R, Jha P, Yadav AK, et al. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere. 2018;207:255–266. doi:10.1016/j.chemosphere.2018.05.050.
  • Liao YL, Yang JY. Microplastic serves as a potential vector for Cr in human digestion system. Sci. Total Environ. 2019;703:134805. doi:10.1016/j.scitotenv.2019.134805.
  • Zhang, X.W., Tong, J.X., Hu, B.X., Wei, W.S., 2017. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(VI)) in soil column. Environ. Sci. Pollut. Res. 25, 459–468. https://doi.org/10.1007/s11356-017-0263-0.
  • McCullough J, Hazen T, Benson S, et al. (1999). Bioremediation of Metals and radionuclides.US Dept. Of Energy. Office of Biological and Environmental Research, Germantown. MC 20874.
  • Sinha V, Pakshirajan K, Chaturvedi R. Chromium tolerance, bioaccumulation and localization in plants: An overview. J. Environ. Manage. 2018;206:715–730. doi:10.1016/j.jenvman.2017.10.033.
  • Xu T, Nan F, Jiang XF, et al. Effect of soil pH on the transport, fractionation, and oxidation of chromium (III). Ecotox. Environ. Safe. 2020;195:110459. doi:10.1016/j.ecoenv.2020.110459.
  • Saha B, Orvig C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 2010;254:2959–2972. doi:10.1016/j.ccr.2010.06.005.
  • Abul Hashem M, Nur-A-Tomall MS, Ahsanl A, et al. Hair burning liming in tanneries: a potential sulfide source to the environment. Sustainable Water Resources Management. 2018;4:1117–1121. doi:10.1007/s40899-018-0270-4.
  • Sawalha H, Alsharabaty R, Sarsour S, et al. Wastewater from leather tanning and processing in Palestine: characterization and management aspects. J. Environ. Manage. 2019;251:109596. doi:10.1016/j.jenvman.2019.109596.
  • Tasca AL, Puccini M. Leather tanning: life cycle assessment of retanning, fatliquoring and dyeing. J. Clean Prod. 2019;226:720–729. doi:10.1016/j.jclepro.2019.03.335.
  • Radenovic D, Kerkez D, Pilipovic DT, et al. Long-term application of stabilization/solidification technique on highly contaminated sediments with environment risk assessment. Sci. Total Environ. 2019;684:186–195. doi:10.1016/j.scitotenv.2019.05.351.
  • Guo FY, Ding CF, Zhou ZG, et al. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification. Ectoxicology and Environmental Safety. 2018;161:164–172. doi:10.1016/j.ecoenv.2018.05.088.
  • Kong XK, Li CH, Wang P, et al. Soil pollution characteristics and microbial responses in a vertical profile with long-term tannery sludge contamination in hebei. Int J Environ Res Public Health. 2019;16:563. doi:10.3390/ijerph16040563.
  • Aceves MB, Santos HE, Berber JDR, et al. Distribution and mobility of Cr in tannery waste amended semi-arid soils under simulated rainfall. J. Hazard. Mater. 2009;171:851–858. doi:10.1016/j.jhazmat.2009.06.087.
  • He ZG, Hu YT, Yin Z, et al. Microbial diversity of chromium-contaminated soils and characterization of six chromium-removing bacteria. Environ. Manage. 2016;57:1319–1328. doi:10.1007/s00267-016-0675-5.
  • Wang M, Tang Y, Anderson CWN, et al. Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum. Environ. Sci. Pollut. Res. 2018;25:15336–15348. doi:10.1007/s11356-018-1408-5.
  • Holland JE, Bennett AE, Newton AC, et al. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018;610:316–332. doi:10.1016/j.scitotenv.2017.08.020.
  • Bothe H. The lime-silicate question. Soil Biol. Biochem. 2015;89:172–183. doi:10.1016/j.soilbio.2015.07.004.
  • Mella B, Glanert AC, Gutterres M. Removal of chromium from tanning wastewater and its reuse. Process Saf. Environ. Protect. 2015;95:195–201. doi:10.1016/j.psep.2015.03.007.
  • Oumani A, Mandi L, Berrekhis F, et al. Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: Key parameters and mechanisms. J. Hazard. Mater. 2019;378:120718. doi:10.1016/j.jhazmat.2019.05.111.
  • Fathima A, Aravindhan R, Rao JR, et al. Biomass of termitomyces clypeatus for chromium(III) removal from chrome tanning wastewater. Clean Technol Environ Policy. 2015;17:541–547. doi:10.1007/s10098-014-0799-3.
  • Ning XA, Luo HJ, Liang XJ, et al. Effects of tannery sludge incineration slag pretreatment on sludge dewaterability. Chem. Eng. J. 2013;221:1–7. doi:10.1016/j.cej.2013.01.106.
  • Miranda ARL, Mendes LW, Rocha SMB, et al. Responses of soil bacterial community after seventh yearly applications of composted tannery sludge. Geoderma. 2018;318:1–8. doi:10.1016/j.geoderma.2017.12.026.
  • Zheng SA, Zheng XQ, Chen C. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain. PLoS One. 2012;7:e49664. doi:10.1371/journal.pone.0049664.
  • Sichuan Ecological Environmental Bulletin. (2018). Sichuan provincial department of ecological environment.
  • Cui HB, Zhang SW, Li RY, et al. Leaching of Cu, Cd, Pb, and phosphorus and their availability in the phosphate-amended contaminated soils under simulated acid rain. Environ. Sci. Pollut. Res. 2017;24:21128–21137. doi:10.1007/s11356-017-9696-8.
  • Ma LY, Wang B, Yang JG. Spatial-temporal distribution of acid rain in Sichuan province. Environmental Science and Management. 2008;4:26–29. (in Chinese).
  • Yang JY, Tang Y, Yang K, et al. Leaching characteristics of vanadium in mine tailings and soil near a vanadium titanomagnetite mining site. J. Hazard. Mater. 2014;264:498–504. doi:10.1016/j.jhazmat.2013.09.063.
  • HJ 962−2018. (2018). Soil-Determination of pH-Potentiometry. National standards for environmental protection of the People's Republic of China. Beijing.
  • HJ 746−2015. (2015). Soil-Determination of redox potential-Potential method. National standards for environmental protection of the People’s Republic of China. Beijing.
  • HJ 802−2016. (2016). Soil-Determination of electrical conductivity-electrode method. National standards for environmental protection of the People’s Republic of China. Beijing.
  • Bao SD. Soil agrochemical analysis. Beijing: China Agriculture Press; 2000.
  • HJ 889−2017. (2017). Soil quality-Determination of cation exchange capacity (CEC)-Hexamminecobalt trichloride solution-Spectrophotometric method. National standards for environmental protection of the People's Republic of China. Beijing.
  • Huang R, Dong ML, Mao P, et al. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. Sci. Total Environ. 2020;721:137581. doi:10.1016/j.scitotenv.2020.137581.
  • GB/T 7466−1987. (1987). Water quality-Determination of total chromium-1, 5 Diphenylcarbazide spectrophotometric method. National standards for environmental protection of the People's Republic of China. Beijing.
  • GB/T 7467−1987. (1987). Water quality-Determination of chromium(VI)-1, 5 Diphenylcarbazide spectrophotometric method. National standards for environmental protection of the People's Republic of China. Beijing.
  • NY/T 1121.12−2006. (2006). Soil testing-Part 12: Method for determination of total chromium in soil. Agricultural industry standards of the People's Republic of China.
  • HJ 687−2014. (2014). Solid waste-Determination of Hexavalent Chromium by Alkaline digestion/flame atomic absorption spectrophotometric. National standards for environmental protection of the People's Republic of China. Beijing.
  • Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace-metals. Anal. Chem. 1979;51:844–851. doi:10.1021/ac50043a017.
  • Li XZ, Rui JP, Mao YJ, et al. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem. 2014b;68:392–401. doi:10.1016/j.soilbio.2013.10.017.
  • Li H, Li TT, Beasley DE, et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota. Front. Microbiol. 2016;7:1169.
  • Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–998. doi:10.1038/NMETH.2604.
  • Hu AY, Yu ZY, Liu XH, et al. The effects of irrigation and fertilization on the migration and transformation processes of main chemical components in the soil profile. Environ Geochem Health. 2019;41:2631–2648. doi:10.1007/s10653-019-00298-3.
  • Fendorf SE. Surface reactions of chromium in soils and waters. Geoderma. 1995;67:55–71. doi:10.1016/0016-7061(94)00062-F.
  • GB/T 14848−2017. (2017). Standard for groundwater quality. National standards for environmental protection of the People's Republic of China. Beijing.
  • Choppala G, Kunhikrishnan A, Seshadri B, et al. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J. Geochem. Explor. 2018;184:255–260. doi:10.1016/j.gexplo.2016.07.012.
  • Wang B, Huang B, Qi YB, et al. Effect of air drying on speciation of heavy metals in flooded rice paddies. Chin. Chem. Lett. 2012;23:1287–1290. doi:10.1016/j.cclet.2012.09.023.
  • Liu B, Su GR, Yang YR, et al. Vertical distribution of microbial communities in chromium-contaminated soil and isolation of Cr(VI)-reducing strains. Ecotox. Environ. Safe. 2019;180:242–251. doi:10.1016/j.ecoenv.2019.05.023.
  • Pei YX, Yu ZS, Ji J, et al. Microbial community structure and function indicate the severity of chromium contamination of the Yellow River. Front. Microbiol. 2018;25:38. doi:10.3389/fmicb.2018.00038.
  • Nafis A, Raklami A, Bechtaoui N, et al. Actinobacteria from extreme niches in Morocco and their plant growth-promoting potentials. Diversity-Basel. 2019;11:139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.