252
Views
8
CrossRef citations to date
0
Altmetric
Articles

Kinetic process of the biosorption of Cu(II), Ni(II) and Cr(VI) by waste Pichia pastoris cells

, , , &
Pages 1730-1750 | Received 27 Jun 2021, Accepted 19 Nov 2021, Published online: 21 Dec 2021

References

  • Yang Z, Zhang Z, Chai L, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater 2016;301:145–152. doi:10.1016/j.jhazmat.2015.08.047.
  • Ahmad I, Imran M, Ansari MI, et al. Metal tolerance and biosorption potential of soil fungi: Applications for a Green and clean water treatment technology. In: Ahmad I, Ahmad F, Pichtel J, editor. Microbes and microbial technology. New York, NY, USA: Springer; 2011. p. 321–361. doi:10.1007/978-1-4419-7931-5_13
  • de Freitas GR, da Silva MGC, Vieira MGA. Biosorption technology for removal of toxic metals: A review of commercial biosorbents and patents. Environ Sci Pollut Res Int 2019;26:19097–19118. doi:10.1007/s11356-019-05330-8.
  • Liu R, Wang W, Zhou W, et al. Acid catalysis coupling bioleaching for enhancement of metals removal from waste resin powder. J Clean Prod 2020;247:119130, doi:10.1016/j.jclepro.2019.119130.
  • Iqbal M. Vicia faba bioassay for environmental toxicity monitoring: a review. Chemosphere. 2016;144(Feb.):785–802.
  • Iqbal M, Abbas M, Nisar J, et al. Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: A review.
  • Pouya MR, Behnam S. Adsorption behavior of copper ions on alga Jania adhaerens through SEM and FTIR analyses. Sep Sci Technol 2017;52:2062–2068. doi:10.1080/01496395.2017.1324492.
  • Sobhanardakani S, Tayebi L, Hosseini SV, et al. Health risk assessment of arsenic and heavy metals (cd, cu, co, pb, and sn) through consumption of caviar of acipenser persicus from southern Caspian Sea. Environ Sci Pollut Res. 2017;25(3):2664–2671.
  • Li L, Hou M, Cao L, et al. Glutathione S-transferases modulate Cu tolerance in Oryza sativa. Environ Exp Bot 2018;155:313–320. doi:10.1016/j.envexpbot.2018.07.007.
  • Cheng SY, Show P-L, Lau BF, et al. New prospects for modified algae in heavy metal adsorption. Trends Biotechnol 2019;37:1255–1268. doi:10.1016/j.tibtech.2019.04.007.
  • Abbas M, Adil M, Ehtisham-ul-Haque S. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review. Sci Total Environ. 2018;626:1295–1309.
  • Netzahuatl-Muñoz AR, Cristiani-Urbina M, Cristiani-Urbina E. Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark: kinetics, equilibrium and thermodynamic studies. PLoS One. 2015;10:e0137086, doi:10.1371/journal.pone.0137086.
  • Gürel L. Applications of the biosorption process for nickel removal from aqueous solutions – A review. Chem Eng Commun 2017;204:711–722. doi:10.1080/00986445.2017.1306698.
  • Akar S, Lorestani B, Sobhanardakani S, et al. Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample. Environ Monit Assess. 2019;191:373.
  • Lam YF, Lee LY, Chua SJ, et al. Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly lansium domesticum peel biosorbent. Ecotoxicol Environ Saf 2016;127:61–70. doi:10.1016/j.ecoenv.2016.01.003.
  • Prithviraj D, Deboleena K, Neelu N, et al. Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine. Ecotoxicol Environ Saf 2014;107:260–268. doi:10.1016/j.ecoenv.2014.06.009.
  • Sobhanardakani S. Ecological and human health risk assessment of heavy metal content of atmospheric dry deposition, a case study: kermanshah, Iran. Biol Trace Elem Res. 2019:187:602–610.
  • Sobhanardakani S. Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon. Mar Pollut Bull. 2017;123(1-2):34–38.
  • Hedrich S, Johnson DB. Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors. Environ Sci Technol 2014;48:12206–12212. doi:10.1021/es5030367.
  • Dai QH, Bian XY, Li R, et al. Biosorption of lead(II) from aqueous solution by lactic acid bacteria. Water Sci Technol 2019;79:627–634. doi:10.2166/wst.2019.082.
  • Doğan M, Abak H, Alkan M. Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms. Water Air Soil Pollut 2008;192:141–153. doi:10.1007/s11270-008-9641-z.
  • Yang Z, Zhang Z. Engineering strategies for enhanced production of protein and bio-products in P.pastoris: A review. Biotechnol Adv 2018;36:182–195. doi:10.1016/j.biotechadv.2017.11.002.
  • Li X, Huang C, Xu CQ, et al. High cell density culture of baker's yeast FX-2 based on pH-stat coupling with respiratory quotient. Biotechnol Appl Biochem 2019;66:389–397. doi:10.1002/bab.1735.
  • Zhang J, Wang X, Su E, et al. A new fermentation strategy for S-adenosylmethionine production in recombinant P.pastoris. Biochem Eng J 2008;41:74–78. doi:10.1016/j.bej.2008.03.009.
  • Sheng PX, Ting Y-P, Chen JP, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 2004;275:131–141. doi:10.1016/j.jcis.2004.01.036.
  • Chen H, Huang D, Lin L, et al. Facile fabrication of Pd nanoparticle/P.pastoris catalysts through adsorption–reduction method: A study into effect of chemical pretreatment. J Colloid Interface Sci 2014;433:204–210. doi:10.1016/j.jcis.2014.07.038.
  • Mosier AP, Behnke J, Jin ET, et al. Microbial biofilms for the removal of Cu2+ from CMP wastewater. J Environ Manage 2015;160:67–72. doi:10.1016/j.jenvman.2015.05.016.
  • Witek-Krowiak A, Reddy D. Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste – unusual isotherms and insights of binding mechanism. Bioresour Technol. 2013;127(none):350–357.
  • Zhang Y, Liu W, Meng X, et al. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass. J Hazard Mater. 2010;178(1-3):1085–1093.
  • Stratford M. Yeast flocculation: calcium specificity. Yeast. 2010;5(6):487–496.
  • Masy CL, Kockerols M, Mestdagh MM. Calcium activity versus “calcium threshold” as the key factor in the induction of yeast flocculation in simulated industrial fermentations. Can J Microbiol. 1991;37(9):2109–2117.
  • Tao Y, Han H, Liu W, et al. Parametric and phenomenological studies about ultrasound-enhanced biosorption of phenolics from fruit pomace extract by waste yeast. Ultrason Sonochem. 2018:52:193–204.
  • Wang T, Zheng X, Wang X, et al. Different biosorption mechanisms of uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J Environ Radioact. 2017;167:92–99.
  • Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects.
  • Zhang H, Hu X, Lu H. Ni(II) and Cu(II) removal from aqueous solution by a heavy metal-resistance bacterium: kinetic, isotherm and mechanism studies. Water Sci Technol 2017;76:859–868. doi:10.2166/wst.2017.275.
  • El-Kamash AM, Zaki AA, El Geleel MA. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J Hazard Mater 2005;127:211–220. doi:10.1016/j.jhazmat.2005.07.021.
  • Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem 1999;34:451–465. doi:10.1016/s0032-9592(98)00112-5.
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40:1361–1403. doi:10.1021/ja02242a004.
  • Deniz F, Kepekci RA. Biosorption of Food Green 3 by a novel green generation composite biosorbent from aqueous environment. Int J Phytorem 2017;19:579–586. doi:10.1080/15226514.2016.1267707.
  • Latour RA. The langmuir isotherm: A commonly applied but misleading approach for the analysis of protein adsorption behavior. J Biomed Mater Res A. 2014;103:949–958. doi:10.1002/jbm.a.35235.
  • Dubey A, Mishra A. A novel plant-based biosorbent for removal of copper (II) from aqueous solutions: biosorption of copper (II) by dried plant biomass. J Renew Mater 2017;5:54–61. doi:10.7569/jrm.2016.634127.
  • Freundlich HMF. Over the adsorption in solution. J Phys Chem 1906;57:385–471.
  • Mahmoud ME. Water treatment of hexavalent chromium by gelatin-impregnated-yeast (Gel–Yst) biosorbent. J Environ Manage 2015;147:264–270. doi:10.1016/j.jenvman.2014.08.022.
  • Khelaifia FZ, Hazourli S, Nouacer S, et al. Valorization of raw biomaterial waste-date stones-for Cr (VI) adsorption in aqueous solution: thermodynamics, kinetics and regeneration studies. Int Biodeterior Biodegrad 2016;114:76–86. doi:10.1016/j.ibiod.2016.06.002.
  • Zhang Y, Li Y, Yang L, et al. Characterization and adsorption mechanism of Zn2þ removal by PVA/EDTA resin in polluted water. J Hazard Mater 2010;178:1046–1054.
  • Das SK, Das AR, Guha AK. A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 2007;41:8281–8287. doi:10.1021/es070814g.
  • Huang J, Liu D, Lu J, et al. Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies. Colloids Surf, A Physicochem Eng Asp 2016;492:242–248. doi:10.1016/j.colsurfa.2015.11.071.
  • Bairagi H, Khan MMR, Ray L, et al. Adsorption profile of lead on Aspergillus versicolor: A mechanistic probing. J Hazard Mater 2011;186:756–764. doi:10.1016/j.jhazmat.2010.11.064.
  • Taty-Costodes VC, Fauduet H, Porte C, et al. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of pinus sylvestris. J Hazard Mater 2003;105:121–142. doi:10.1016/j.jhazmat.2003.07.009.
  • Özer A, Özer D. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 2003;100:219–229. doi:10.1016/s0304-3894(03)00109-2.
  • Nordin N, Zakaria ZA, Ahmad WA. Utilisation of rubber wood shavings for the removal of Cu(II) and Ni(II) from aqueous solution. Water Air Soil Pollut. 2012;223(4):1649–1659.
  • Peng Q, Liu Y, Zeng G, et al. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J Hazard Mater 2010;177:676–682. doi:10.1016/j.jhazmat.2009.12.084.
  • Tyagi B, Gupta B, Thakur IS. Biosorption of Cr (VI) from aqueous solution by extracellular polymeric substances (EPS) produced by Parapedobacter sp. ISTM3 strain isolated from Mawsmai cave, Meghalaya, India. Environ Res 2020;191:110064, doi:10.1016/j.envres.2020.110064.
  • Zhang LF, Jiang CY, Shao Z. Kinetic study for biosorption of Cr (VI) from aqueous solution by Aspergillus Niger. Appl Mech Mater 2014;556:286–289. doi:10.4028/www.scientific.net/amm.556-562.286.
  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, et al. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 2014;7:57–62. doi:10.1016/j.arabjc.2013.05.022.
  • De Rossi A, Rigon MR, Zaparoli M, et al. Chromium (VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ Sci Pollut Res Int 2018;25:19179–19186. doi:10.1007/s11356-018-2377-4.
  • Tonk S, Nagy B, Török A., et al. Cd(II), Zn(II) and Cu(II) bioadsorption on chemically treated waste brewery yeast biomass: The role of functional groups. Acta Chim Slov 2015, 62, 736–746. doi:10.17344/acsi.2014.1265.
  • Rezaei H. Biosorption of chromium by using Spirulina sp. Arab J Chem 2016;9:846–853. doi:10.1016/j.arabjc.2013.11.008.
  • Ah A, Ajf B, Hy C, et al. Adsorption of Pb(II) ions from contaminated water by 1,2,3,4-butanetetracarboxylic acid-modified microcrystalline cellulose: isotherms, kinetics, and thermodynamic studies - ScienceDirect. Int J Biol Macromol. 2020;164:3193–3203.
  • Aharoni C, Ungarish M. Kinetics of activated chemisorption Part 2. Theoretical models. J Chem Soc Faraday Trans 1977;73:456–464.
  • Hosseini M, Mertens SFL, Ghorbani M, et al. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Mater Chem Phys 2003;78:800–807.
  • Tutem E, Apak R, Unal CF. Adsorptive removal of chlorophenols from water by bituminous shale. Water Res 1998;32:2315–2324.
  • Şengil İA, Özacar M. Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel. J Hazard Mater 2008;157:277–285. doi:10.1016/j.jhazmat.2007.12.115.
  • Hadi AG. Removal of Fe (II) and Zn (II) ions from aqueous solutions by synthesized chitosan. Int J Chemtech Res. 2016;9(4):343–349.
  • Khera R A, Iqbal M, Ahmad A, et al. Kinetics and equilibrium studies of copper, zinc, and nickel ions adsorptive removal on to Archontophoenix alexandrae: conditions optimization by RSM. Desalin Water Treat. 2020;201:289–300.
  • Somera LR, Cuazon R, Cruz JK, et al. Kinetics and isotherms studies of the adsorption of H (II) onto iron modified montmorillonite/polycaprolactone nanofiber membrane. IOP conference Series: Materials Science and Engineering. Vol. 540, IOP Publishing; 2019. p. 012005
  • Legrouri K, Khouya E, Hannache H, et al. Activated carbon from molasses efficiency for Cr(VI), Pb(II) and Cu(II) adsorption: A mechanistic study. Chem Int 2017;3(3):301–310.
  • Sathvika T, Rajesh V, Rajesh N. Microwave assisted immobilization of yeast in cellulose biopolymer as a green adsorbent for the sequestration of chromium. Chem Eng J 2015;279:38–46. doi:10.1016/j.cej.2015.04.132.
  • Oves M, Khan MS, Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 2013;20:121–129. doi:10.1016/j.sjbs.2012.11.006.
  • Razmovski R, Šćiban M. Biosorption of Cr(VI) and Cu(II) by waste tea fungal biomass. Ecol Eng 2008;34:179–186. doi:10.1016/j.ecoleng.2008.07.020.
  • Amirnia S, Ray MB, Margaritis A. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem Eng J 2015;264:863–872. doi:10.1016/j.cej.2014.12.016.
  • Dutta A, Zhou L, Castillo-Araiza CO, et al. Cadmium(II), lead(II), and copper(II) biosorption on baker’s yeast (Saccharomyces cerevesiae). J Environ Eng 2016;142:C6015002, doi:10.1061/(asce)ee.1943-7870.0001041.
  • Jos JC, Debs KB, Labuto G, et al. Synthesis, characterization, and application of yeast-based magnetic bionanocomposite for the removal of Cu(II) from water. Chem Eng Commun 2019;206(11):1581–1591.
  • Wierzba S. Biosorption of nickel (II) and zinc (II) from aqueous solutions by the biomass of yeast Yarrowia lipolytica. Pol J Chem Technol 2017;19:1–10. doi:10.1515/pjct-2017-0001.
  • Ramírez Carmona ME, Pereira da Silva MA, et al. Packed bed redistribution system for Cr(III) and Cr(VI) biosorption by Saccharomyces cerevisiae. J Taiwan Inst Chem Eng 2012;43:428–432. doi:10.1016/j.jtice.2011.12.002.
  • Sepehr MN, Zarrabi M, Amrane A. Removal of CR (III) from model solutions by isolated Aspergillus niger and Aspergillus oryzae living microorganisms: equilibrium and kinetic studies. J Taiwan Inst Chem Eng 2012;43:420–427. doi:10.1016/j.jtice.2011.12.001.
  • Machado MD, Santos MSF, Gouveia C, et al. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: The flocculation as a separation process. Bioresour Technol 2008;99:2107–2115. doi:10.1016/j.biortech.2007.05.047.
  • Yao ZY, Qi JH, Wang LH. Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J Hazard Mater 2010;174:137–143. doi:10.1016/j.jhazmat.2009.09.027.
  • Chaplin MF, Kennedy JF. Carbohydrate analysis: A practical approach. Oxford: IRL Press; 1986.
  • Esposito A, Pagnanelli F, Lodi A, et al. Biosorption of heavy metals by Sphaerotilus natans: An equilibrium study at different pH and biomass concentrations. Hydrometallurgy. 2001;60:129–141. doi:10.1016/s0304-386x(00)00195-x.
  • Ertugay N, Bayhan YK. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. J Hazard Mater 2008;154:432–439. doi:10.1016/j.jhazmat.2007.10.070.
  • Fawzy MA. Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism. Environ Toxicol Pharmacol 2016;46:116–121. doi:10.1016/j.etap.2016.07.008.
  • Shameem H, Tushar KG. Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity. J Hazard Mater 2008;152:826–837.
  • Li GY, Yu RJ. Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compd 2008;466:451–456.
  • Javaid A, Bajwa Shafique RU, Anwa J. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenerg. 2011;35:1675–1682.
  • Mathivanan K, Rajaram R, Balasubramanian V, et al. Removal of Cd(II) and Cu(II) from aqueous solutions by Pseudomonas stutzeri KMNTT-01 biomass. Environ. Processes. 2016;3:857–874. doi:10.1007/s40710-016-0193-8.
  • He P, Liu J, Ren Z, et al. Optimization and mechanisms of methylene blue removal by foxtail millet shell from aqueous water and reuse in biosorption of Pb (II), Cd (II), Cu (II), and Zn (II) for secondary times. Int J Phytoremediation. 2021;23:1–14.
  • Peng SH, Wang R, et al. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Ecotoxicol Environ Saf. 2018;165:61–69.
  • Anirudhan TS, Jalajamony S, Sreekumari SS. Adsorptive removal ofCu(II) ions from aqueous mediaonto 4-ethyl thiosemicarbazide intercalated organophilic calcined hydrotalcite. J Chem Eng Data. 2013;58(1):24–31.
  • Kuriyama H, Umeda I, Kobayashi H. Role of cations in the flocculation of saccharomyces cerevisiae and discrimination of the corresponding proteins. Can J Microbiol. 1991;37(5):397–403.
  • Stratford M. Yeast flocculation: calcium specificity. Yeast. 2010;5(6):487–496.
  • Lopez Errasquin E, Vazquez C. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere. 2003;50(1):137–143.
  • Guler U A, Sarioglu M. Mono and binary component biosorption of Cu(II), Ni(II), and Methylene Blue onto raw and pretreated S. cerevisiae: equilibrium and kinetics. Desalination Water Treat. 2014;52(25-27):4871–4888.
  • Xiao-Jing H, Hai-Dong G, Ting-Ting Z, et al. Biosorption mechanism of Cu2+ by innovative immobilized spent substrate of fragrant mushroom biomass. Ecol Eng. 2014;73:509–513.
  • Nishihara H, Kio K, Imamura M. Possible mechanism of co-flocculation beteeen non-flocculent yeasts. J Inst Brew. 2000;106(1):7–10.
  • Xu WT, Wang XW, Zhang XW, et al. A new C-type lectin (FcLec5) from the Chinese white shrimp Fenneropenaeus chinensis. Amino Acids. 2010;39(5):1227–1239.
  • Qiu Y, Guo H, Guo C, et al. One-step preparation of nano-Fe3O4 modified inactivated yeast for the adsorption of patulin. Food Control. 2018;86:310–318.
  • Zhao Y, Wang D, Xie H, et al. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies. Bioprocess Biosyst Eng. 2015;38(1):69–77.
  • Tian Y, Ji C, Zhao M, et al. Preparation and characterization of baker's yeast modified by nano-Fe3O4: application of biosorption of methyl violet in aqueous solution. Chem Eng J. 2010;165(2):474–481.
  • Lacatusu I, Oprea O, et al. Physicochemical characterization and use of heat pretreated commercial instant dry baker's yeast as a potential biosorbent for Cu(II) removal. Clean Soil Air Water. 2014;42(11):1632–1641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.