736
Views
2
CrossRef citations to date
0
Altmetric
Articles

Strategy for the formation of microalgae-bacteria aggregates in high-rate algal ponds

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1863-1876 | Received 01 Sep 2021, Accepted 28 Nov 2021, Published online: 22 Dec 2021

References

  • Chandra R, Iqbal HMN, Vishal G, et al. Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol. 2019;278:346–359. doi:10.1016/j.biortech.2019.01.104.
  • Arbib Z, de Godos I, Ruiz J, et al. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Sci Total Environ. 2017;589:66–72. doi:10.1016/j.scitotenv.2017.02.206.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–232. doi:10.1016/j.rser.2009.07.020.
  • Molina Grima E, Belarbi EH, Acién Fernández FG, et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20:491–515. doi:10.1016/S0734-9750(02)00050-2.
  • Ummalyma SB, Gnansounou E, Sukumaran RK, et al. Accepted manuscript bioflocculation : an alternative strategy for harvesting of microalgae -an over- view. Bioresour Technol. 2017;242:227–235. doi:10.1016/j.biortech.2017.02.097.
  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702. doi:10.1016/j.biotechadv.2011.05.015.
  • Singh H, Kumar N, Mishra BK. Understanding the by-product formation potential during phenol oxidation from in-situ electro-generated radicals by microalgae harvesting. Environ Technol. 2020;42:3533–3545. (United Kingdom). Taylor & Francis. doi:10.1080/09593330.2020.1733675.
  • Valeriano González MT, Orta Ledesma MT, Velasquez-Orta SB, et al. Harvesting microalgae using ozone-air flotation for recovery of biomass, lipids, carbohydrates, and proteins. Environ Technol. 2020;0:1–18. doi:10.1080/09593330.2020.1725144.
  • Arcila JS, Buitrón G. Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. J Chem Technol Biotechnol. 2016;91:2862–2870. doi:10.1002/jctb.4901.
  • Arcila JS, Buitrón G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment. Algal Res. 2017;27:190–197. doi:10.1016/j.algal.2017.09.011.
  • Leong WH, Lim JW, Lam MK, et al. Co-cultivation of activated sludge and microalgae for the simultaneous enhancements of nitrogen-rich wastewater bioremediation and lipid production. J Taiwan Inst Chem Eng. 2018;87:216–224. doi:10.1016/j.jtice.2018.03.038.
  • Trebuch LM, Oyserman BO, Janssen M, et al. Impact of hydraulic retention time on community assembly and function of photogranules for wastewater treatment. Water Res. 2020;173:115506. doi:10.1016/j.watres.2020.115506.
  • Wang H, Hill RT, Zheng T, et al. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit Rev Biotechnol. 2016;36:341–352. doi:10.3109/07388551.2014.961402.
  • Lee Y, Lei Z. Microalgal-bacterial aggregates for wastewater treatment: a mini-review. Bioresour Technol Rep. 2019;8:100199. doi:10.1016/j.biteb.2019.100199.
  • Su Y, Mennerich A, Urban B. Bioresource technology synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment : influence of algae and sludge inoculation ratios. Bioresour Technol. 2012;105:67–73. doi:10.1016/j.biortech.2011.11.113.
  • Sun L, Zuo W, Tian Y, et al. Performance and microbial community analysis of an algal-activated sludge symbiotic system: effect of activated sludge concentration. J Environ Sci. 2018: 1–12. doi:10.1016/j.jes.2018.04.010.
  • Tiron O, Bumbac C, Patroescu IV, et al. Granular activated algae for wastewater treatment. Water Sci Technol. 2015;71:832–839. doi:10.2166/wst.2015.010.
  • Van Den Hende S, Beelen V, Julien L, et al. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: an outdoor pilot-scale study. Bioresour Technol. 2016;218:969–979. doi:10.1016/j.biortech.2016.07.065.
  • He Q, Chen L, Zhang S, et al. Natural sunlight induced rapid formation of water-born algal-bacterial granules in an aerobic bacterial granular photo-sequencing batch reactor. J Hazard Mater. 2018;359:222–230. doi:10.1016/j.jhazmat.2018.07.051.
  • Huang W, Li B, Zhang C, et al. Bioresource technology effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresour Technol. 2015;179:187–192. doi:10.1016/j.biortech.2014.12.024.
  • Syafri J, Ahmad M, Cai W, et al. Bioresource technology stability of algal-bacterial granules in continuous- fl ow reactors to treat varying strength domestic wastewater. Bioresour Technol. 2017;244:225–233. doi:10.1016/j.biortech.2017.07.134.
  • Xu Y, Wang Y, Yang Y, et al. The role of starvation in biomass harvesting and lipid accumulation : co-culture of microalgae – bacteria in synthetic wastewater. Environ Prog Sustain Energy. 2016;35:103–109. doi:10.1002/ep.
  • Zhang B, Lens PNL, Shi W, et al. Enhancement of aerobic granulation and nutrient removal by an algal-bacterial consortium in a laboratory scale photobioreactor. Chem Eng J. 2017. doi:10.1016/j.cej.2017.11.151
  • García J, Green BF, Lundquist T, et al. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresour Technol. 2006;97:1709–1715. doi:10.1016/j.biortech.2005.07.019.
  • APHA, AWWA, and WPCF. Standard methods for the examination of water and wastewater. 22th ed Baltimore: Port City Press; 2012.
  • Ji X, Jiang M, Zhang J, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater. Bioresour Technol. 2017. doi:10.1016/j.biortech.2017.09.074
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356. doi:10.1021/ac60111a017.
  • Lowry H, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–275. doi:10.1016/S0021-9258(19)52451-6.
  • Oh H, Lee SJ, Park M, et al. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp AM49. Biotechnol Lett. 2001;23:1229–1234.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high- throughput community sequencing data. Nature Methods. 2010;7(5):335–336. doi:10.1038/nmeth.f.303.
  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi:10.1093/bioinformatics/btq461.
  • Brown EA, Chain FJJ, Crease TJ, et al. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities? Ecol Evol. 2015;5:2234–2251. doi:10.1002/ece3.1485.
  • Edgar RC. (2013). UPARSE : highly accurate OTU sequences from microbial amplicon reads 10. doi:10.1038/nmeth.2604.
  • Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi:10.1093/bioinformatics/btr381.
  • Buchanan NA, Young P, Cromar NJ, et al. Performance of a high rate algal pond treating septic tank effluent from a community wastewater management scheme in rural South Australia. Algal Res. 2018;35:325–332. doi:10.1016/j.algal.2018.08.036.
  • Zhu S, Qin L, Feng P, et al. Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor. Bioresour Technol. 2019;274:313–320. doi:10.1016/j.biortech.2018.10.034.
  • Uggetti E, Sialve B, Hamelin J, et al. CO2 addition to increase biomass production and control microalgae species in high rate algal ponds treating wastewater. J CO2 Util. 2018;28:292–298. doi:10.1016/j.jcou.2018.10.009.
  • Mehrabadi A, Craggs R, Farid MM. Biodiesel production potential of wastewater treatment high rate algal pond biomass. Bioresour Technol. 2016;221:222–233. doi:10.1016/j.biortech.2016.09.028.
  • Montemezzani V, Duggan IC, Hogg ID, et al. Zooplankton community influence on seasonal performance and microalgal dominance in wastewater treatment high rate algal ponds. Algal Res. 2016;17:168–184. doi:10.1016/j.algal.2016.04.014.
  • Pinder LCV. Biology of freshwater Chironomidae. Annu Rev Entomol. 1986;31:1–23. doi:10.1146/annurev.ento.31.1.1.
  • Sutherland DL, Turnbull MH, Craggs RJ. Environmental drivers that influence microalgal species in fullscale wastewater treatment high rate algal ponds. Water Res. 2017;124:504–512. doi:10.1016/j.watres.2017.08.012.
  • Milferstedt K, Hamelin J, Park C, et al. Biogranules applied in environmental engineering. Int J Hydrogen Energy. 2017;42:27801–27811. doi:10.1016/j.ijhydene.2017.07.176.
  • Zhang B, Li W, Guo Y, et al. Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renew Sustain Energy Rev. 2020;118:109563. doi:10.1016/j.rser.2019.109563.
  • Fuentes JL, Garbayo I, Cuaresma M, et al. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs. 2016;14(5):100. doi:10.3390/md14050100.
  • Janczukowicz W, Szewczyk M, Krzemieniewski M, et al. Settling properties of activated sludge from a sequencing batch reactor (SBR). Pol J Environ Stud. 2001;10:15–20.
  • Wang L, Liu J, Zhao Q, et al. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresour Technol. 2016;211:1–5. doi:10.1016/j.biortech.2016.03.048.
  • do Couto E, Calijuri ML, Assemany PP, et al. Influence of solar radiation on nitrogen recovery by the biomass grown in high rate ponds. Ecol Eng. 2015;81:140–145. doi:10.1016/j.ecoleng.2015.04.040.
  • Muñoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–2815. doi:10.1016/j.watres.2006.06.011.
  • Gutiérrez R, Ferrer I, Uggetti E, et al. Settling velocity distribution of microalgal biomass from urban wastewater treatment high rate algal ponds. Algal Res. 2016;16:409–417. doi:10.1016/j.algal.2016.03.037.
  • Mujtaba G, Lee K. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Res. 2017;120:174–184. doi:10.1016/j.watres.2017.04.078.
  • Sutherland DL, Turnbull MH, Craggs RJ. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds. Water Res. 2014;53:271–281. doi:10.1016/j.watres.2014.01.025.
  • Assemany PP, Calijuri ML, Santiago ADF, et al. Effect of solar radiation on the lipid characterization of biomass cultivated in high-rate algal ponds using domestic sewage. Environ Technol. 2014;35:2296–2305. doi:10.1080/09593330.2014.902111.
  • Perera IA, Abinandan S, Subashchandrabose SR, et al. Extracellular polymeric substances drive symbiotic interactions in bacterial‒microalgal consortia. Microb Ecol. 2021. doi:10.1007/s00248-021-01772-1
  • Lakaniemi A-M, Hulatt CJ, Wakeman KD, et al. Eukaryotic and prokaryotic microbial communities during microalgal biomass production. Bioresour Technol. 2012;124:387–393. doi:10.1016/j.biortech.2012.08.048.
  • Siddiqi MZ, Sok W, Choi G, et al. Simplicispira hankyongi sp. nov., a novel denitrifying bacterium isolated from sludge. Antonie van Leeuwenhoek. 2020;113:331–338. doi:10.1007/s10482-019-01341-0.
  • Wu X-T, He Y-Q, Li G-X, et al. Genome sequence of sulfide-dependent denitrification bacterium Thermomonas sp. strain XSG, isolated from marine sediment. Microbiol Resour Announc. 2021;10:e00057–21. doi:10.1128/MRA.00057-21.
  • Xing W, Li J, Li P, et al. Effects of residual organics in municipal wastewater on hydrogenotrophic denitrifying microbial communities. J Environ Sci (China). 2018;65:262–270. doi:10.1016/j.jes.2017.03.001.
  • Zielińska M, Rusanowska P, Jarząbek J, et al. Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants. Environ Technol. 2016;37:2358–2367. doi:10.1080/09593330.2016.1150350.
  • Kong Y, Nielsen JL, Nielsen PH. Microautoradiographic study of rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol. 2004;70:5383–5390. doi:10.1128/AEM.70.9.5383-5390.2004.
  • Yang Y, Gerrity S, Collins G, et al. Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal. Process Biochem. 2018;68:165–170. doi:10.1016/j.procbio.2018.02.017.
  • Cydzik-Kwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotechnol. 2016;32:66. doi:10.1007/s11274-016-2012-9.
  • Palma TL, Donaldben MN, Costa MC, et al. Putative role of flavobacterium, dokdonella and methylophilus strains in paracetamol biodegradation. Water Air Soil Pollut. 2018;229:200. doi:10.1007/s11270-018-3858-2.
  • Yong Y-C, Wu X-Y, Sun J-Z, et al. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. Chemosphere. Wastewater-Energy Nexus. 2015;140:18–25. doi:10.1016/j.chemosphere.2014.10.020.
  • Ramanan R, Kim B, Cho D, et al. Algae – bacteria interactions : evolution, ecology and emerging applications. Biotechnol Adv. 2016;34:14–29.
  • Perera IA, Abinandan S, Subashchandrabose SR, et al. Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit Rev Biotechnol. 2019;39:709–731. doi:10.1080/07388551.2019.1597828.
  • Tait K, White DA, Kimmance SA, et al. Characterisation of bacteria from the cultures of a Chlorella strain isolated from textile wastewater and their growth enhancing effects on the axenic cultures of Chlorella vulgaris in low nutrient media. Algal Res. 2019;44:101666. doi:10.1016/j.algal.2019.101666.
  • Lim Y-W, Lee S-A, Kim SB, et al. Diversity of denitrifying bacteria isolated from Daejeon sewage treatment plant. J Microbiol. 2005;43:383–390.
  • Zhang B, Ji M, Qiu Z, et al. Microbial population dynamics during sludge granulation in an anaerobic–aerobic biological phosphorus removal system. Bioresour Technol. 2011;102:2474–2480. doi:10.1016/j.biortech.2010.11.017.
  • Vandamme D, Foubert I, Fraeye I, et al. Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol. 2012;105:114–119. doi:10.1016/j.biortech.2011.11.105.
  • Zhang B, Liu L, Lin X, et al. Response surface methodology to optimize self-flocculation harvesting of microalgae Desmodesmus sp.CHX1. Environ Technol. 2021;0:1–9. doi:10.1080/09593330.2021.1892831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.