3,948
Views
4
CrossRef citations to date
0
Altmetric
Articles

Density measurements of aerobic granular sludge

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1985-1995 | Received 05 Oct 2021, Accepted 05 Dec 2021, Published online: 18 Jan 2022

References

  • Liu Y, Wang ZW, Liu YQ, et al. A generalized model for settling velocity of aerobic granular sludge. Biotechnol Prog. 2005;21(2):621–626. DOI:10.1021/bp049674u.
  • Winkler MKH, Bassin J, Kleerebezem R, et al. Temperature and salt effects on settling velocity in granular sludge technology. Water Res. 2012;46(16):5445–5451. DOI:10.1016/j.watres.2012.07.022.
  • Pronk M, de Kreuk MK, de Bruin B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 2015;84:207–2170. DOI:10.1016/j.watres.2015.07.011.
  • de Kreuk MK, Van Loosdrecht MCM. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci Technol. 2004;49(11–12):9–17. DOI:10.2166/wst.2004.0792.
  • Bengtsson S, de Blois M, Wilén B-M, et al. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environ Technol. 2019;40(21):2769–2778. DOI:10.1080/09593330.2018.1452985.
  • Etterer T, Wilderer PA. Generation and properties of aerobic granular sludge. Water Sci Technol. 2001;43:19–26. DOI:10.2166/wst.2001.0114.
  • Quoc BN, Wei S, Armenta M, et al. Aerobic granular sludge: impact of size distribution on nitrification capacity. Water Res. 2021;188:116445. DOI:10.1016/j.watres.2020.116445.
  • Winkler MKH, Kleerebezem R, Strous M, et al. Factors influencing the density of aerobic granular sludge. Appl Microbiol Biotechnol. 2013;97(16):7459–7468. DOI:10.1007/s00253-012-4459-4.
  • Nicolella C, van Loosdrecht MC, Di Felice R, et al. Terminal settling velocity and bed-expansion characteristics of biofilm-coated particles. Biotechnol Bioeng. 1999;62(1):62–70.DOI:10.1002/(SICI)1097-0290(19990105)62:1<62::AID-BIT8>3.0.CO;2-U.
  • Cassidy D, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Res. 2005;39(19):4817–4823. DOI:10.1016/j.watres.2005.09.025.
  • Di Iaconi C, Ramadori R, Lopez A, et al. Preliminary biomass characterization in a sequencing batch biofilm reactor. Annali di Chimica: J Anal, Environ Cult Herit Chem. 2004;94(12):889–898. DOI:10.1002/adic.200490111.
  • Beuling EE, van Dusschoten D, Lens D, et al. Characterization of the diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance. Biotechnol Bioeng. 1998;60:283–291. DOI:10.1002/(SICI)1097-0290(19981105)60:3<283::AID-BIT3>3.0.CO;2-D.
  • Horn H, Morgenroth E. Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Eng Sci. 2006;61:1347–1356. DOI:10.1016/j.ces.2005.08.027.
  • Stewart PS. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng. 1998;59:261–272.DOI:10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9.
  • de Kreuk MK, Picioreanu C, Hosseini M, et al. Kinetic model of a granular sludge SBR: influences on nutrient removal. Biotechnol Bioeng. 2007;97:801–815. DOI:10.1002/bit.21196.
  • Hao X, Heijnen JJ, van Loosdrecht MC. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng. 2002;77(3):266–277. DOI:10.1002/bit.10105.
  • Takács I, Bye C, Chapman K, et al. A biofilm model for engineering design. Water Sci Technol. 2007;55(8–9):329–336. DOI:10.2166/wst.2007.274.
  • Torfs E, Nopens I, Winkler M, et al. Settling tests. In: MCM van Loosdrecht, P Nielsen, CM Lopez-Vazquez, D Brdjanovic, editors. Experimental methods in wastewater treatment. London: IWA; 2016. p. 235–262.
  • Pertoft H, Laurent TC, Låås T, et al. Density gradients prepared from colloidal silica particles coated by polyvinylpyrrolidone (Percoll). Anal Biochem. 1978;88(1):271–282. DOI:10.1016/0003-2697(78)90419-0.
  • Beun J, van Loosdrecht M, Heijnen J. Aerobic granulation in a sequencing batch airlift reactor. Water Res. 2002;36(3):702–712. DOI:10.1016/S0043-1354(01)00250-0.
  • Trego AC, Morabito C, Mills S, et al. Diversity converges during community assembly in methanogenic granules, suggesting a biofilm life-cycle. BioRxiv. 2018;484642. DOI:10.1101/484642.
  • APHA. Standard methods for the examination of water and wastewater. Washington (DC): American Public Health Association (APHA); 2005.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. DOI:10.1038/nmeth.2089.
  • Jimenez B, Noyola A, Capdeville B. Selected dyes for residence time distribution evaluation in bioreactors. Biotechnol Tech. 1988;2(2):77–82. DOI:10.1007/BF01876154
  • Jimenez B, Noyola A, Capdeville B, et al. Dextran blue colorant as a reliable tracer in submerged filters. Water Res. 1988;22(10):1253–1257. DOI:10.1016/0043-1354(88)90112-1.
  • Khan A, Richardson J. The resistance to motion of a solid sphere in a fluid. Chem Eng Commun. 1987;62(1-6):135–150. DOI:10.1080/00986448708912056.
  • Atkinson M, Bingman C. Elemental composition of commercial seasalts. J Aquaric Aquat Sci. 1997;8(2):39–43.
  • van Dijk EJ, Pronk M, van Loosdrecht MC. A settling model for full-scale aerobic granular sludge. Water Res. 2020;186:116135. DOI:10.1016/j.watres.2020.116135.
  • Alphenaar PA, Pérez MC, Lettinga G. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules. Appl Microbiol Biotechnol. 1993;39(2):276–280. DOI:10.1007/BF00228619.
  • Bueno, R. d. F., Faria, J. K., Uliana, D. P., Liduino, V. S. Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge. Environ Technol. 2020: 1–15. DOI:10.1080/09593330.2020.1740798.
  • Herrling MP, Weisbrodt J, Kirkland CM, et al. NMR investigation of water diffusion in different biofilm structures. Biotechnol Bioeng. 2017. DOI:10.1002/bit.26392.
  • Li X, Luo J, Guo G, et al. Seawater-based wastewater accelerates development of aerobic granular sludge: a laboratory proof-of-concept. Water Res. 2017;115:210–219. DOI:10.1016/j.watres.2017.03.002.
  • Tassew FA, Bergland WH, Dinamarca C, et al. Settling velocity and size distribution measurement of anaerobic granular sludge using microscopic image analysis. J Microbiol Methods. 2019;159:81–90. DOI:10.1016/j.mimet.2019.02.013.
  • Wei SP, Quoc BN, Shapiro M, et al. Application of aerobic kenaf granules for biological nutrient removal in a full-scale continuous flow activated sludge system. Chemosphere. 2021;271:129522. DOI:10.1016/j.chemosphere.2020.129522.
  • Xu D, Fan J, Li W, et al. Deciphering correlation between permeability and size of anammox granule: ‘pores as medium’. Water Res. 2021;191:116832. DOI:10.1016/j.watres.2021.116832.
  • Xu D, Kang D, Yu T, et al. A secret of high-rate mass transfer in anammox granular sludge: ‘Lung-like breathing’. Water Res. 2019;154:189–198. DOI:10.1016/j.watres.2019.01.039.
  • Arrojo B, Mosquera-Corral A, Campos J, et al. Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR). J Biotechnol. 2006;123(4):453–463. DOI:10.1016/j.jbiotec.2005.12.023.
  • Corsino S, Campo R, Di Bella G, et al. Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor. Bioresour Technol. 2016;200:1055–1059. DOI:10.1016/j.biortech.2015.10.065.
  • de Kreuk MK, Heijnen JJ, van Loosdrecht MCM. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng. 2005;90:761–769. DOI:10.1002/bit.20470.
  • Isanta E, Suárez-Ojeda ME, del Río ÁV, et al. Long term operation of a granular sequencing batch reactor at pilot scale treating a low-strength wastewater. Chem Eng J. 2012;198:163–170. DOI:10.1016/j.cej.2012.05.066.
  • Lemaire R, Webb RI, Yuan Z. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J. 2008;212:528–541. DOI:10.1038/ismej.2008.12.
  • López-Palau S, Dosta J, Pericas A, et al. Partial nitrification of sludge reject water using suspended and granular biomass. J Chem Technol Biotechnol. 2011;86(12):1480–1487. DOI:10.1002/jctb.2643.
  • Mu Y, Yu H-Q, Wang G. Permeabilities of anaerobic CH4-producing granules. Water Res. 2006;40(9):1811–1815. DOI:10.1016/j.watres.2006.03.006.
  • Nor-Anuar A, Ujang Z, Van Loosdrecht M, et al. Strength characteristics of aerobic granular sludge. Water Sci Technol. 2012;65(2):309–316. DOI:10.2166/wst.2012.837.
  • Tijhuis L, Van Loosdrecht M, Heijnen J. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol Bioeng. 1994;44(5):595–608. DOI:10.1002/bit.260440506.
  • Yuan S, Gao M, Zhu F, et al. Disintegration of aerobic granules during prolonged operation. Environ Sci: Water Res Technol. 2017;3(4):757–766. DOI:10.1039/C7EW00072C.
  • Lefebvre O, Moletta R. Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res. 2006;40(20):3671–3682. DOI:10.1016/j.watres.2006.08.027.
  • Golmohamadi M, Wilkinson KJ. Diffusion of ions in a calcium alginate hydrogel-structure is the primary factor controlling diffusion. Carbohydr Polym. 2013;94:82–87. DOI:10.1016/J.CARBPOL.2013.01.046.
  • Saitoh S, Araki Y, Kon R, et al. Swelling/deswelling mechanism of calcium alginate gel in aqueous solutions. Dent Mater J. 2000;19(4):396–404. DOI:10.4012/dmj.19.396.
  • Liu N, Dopffel N, Hovland B, et al. High osmotic stress initiates expansion and detachment of Thalassospira sp. biofilms in glass microchannels. J Environ Chem Eng. 2020;8(6):104525. DOI:10.1016/j.jece.2020.104525.
  • Yan J, Nadell CD, Stone HA, et al. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat Commun. 2017;8(1):1–11. DOI:10.1038/s41467-017-00401-1.
  • Seviour T, Pijuan M, Nicholson T, et al. Understanding the properties of aerobic sludge granules as hydrogels. Biotechnol Bioeng. 2009;102:1483–1493. DOI:10.1002/bit.22164.
  • de Graaff DR, van Dijk EJH, van Loosdrecht MCM, et al. Strength characterization of full-scale aerobic granular sludge. Environ Technol. 2018: 1–11. DOI:10.1080/09593330.2018.1543357.
  • Flory PJ. Principles of polymer chemistry. Ithaca, New York: Cornell University Press; 1953.
  • Pfaff N-M, Kleijn JM, van Loosdrecht MC, et al. Formation and ripening of alginate-like exopolymer gel layers during and after membrane filtration. Water Res. 2021;195:116959. DOI:10.1016/j.watres.2021.116959.
  • Lai VK, Nedrelow DS, Lake SP, et al. Swelling of collagen-hyaluronic acid co-gels: an in vitro residual stress model. Ann Biomed Eng. 2016;44(10):2984–2993. DOI:10.1007/s10439-016-1636-0.
  • Voutouri C, Polydorou C, Papageorgis P, et al. Hyaluronan-derived swelling of solid tumors, the contribution of collagen and cancer cells, and implications for cancer therapy. Neoplasia. 2016;18(12):732–741. DOI:10.1016/j.neo.2016.10.001.
  • Felz S, Kleikamp H, Zlopasa J, et al. Impact of metal ions on structural EPS hydrogels from aerobic granular sludge. Biofilm. 2020a;2:100011. DOI:10.1016/j.bioflm.2019.100011.
  • Felz S, Neu TR, van Loosdrecht MC, et al. Aerobic granular sludge contains hyaluronic acid-like and sulfated glycosaminoglycans-like polymers. Water Res. 2020b;169:115291. DOI:10.1016/j.watres.2019.115291.
  • Lin Y, Zhang H, Adin A. Characterization of bacterial alginate extracted from biofilm matrix. Desalin Water Treat. 2009;8(1–3):250–255. DOI:10.5004/dwt.2009.791.
  • Lin Y, Reino C, Carrera J, et al. Glycosylated amyloid-like proteins in the structural extracellular polymers of aerobic granular sludge enriched with ammonium-oxidizing bacteria. Microbiology Open. 2018: e00616. DOI:10.1002/mbo3.616.
  • Erskine E, MacPhee CE, Stanley-Wall NR. Functional amyloid and other protein fibers in the biofilm matrix. J Mol Biol. 2018;430(20):3642–3656. DOI:10.1016/j.jmb.2018.07.026.
  • Romero D, Aguilar C, Losick R, et al. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci USA. 2010;107(5):2230–2234. DOI:10.1073/pnas.0910560107.