351
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@FeS core–shell nanowires

, , , , , & show all
Pages 2451-2461 | Received 28 Nov 2021, Accepted 15 Jan 2022, Published online: 13 Feb 2022

References

  • Charuaud L, Jarde E, Jaffrezic A, et al. Veterinary pharmaceutical residues from natural water to tap water: sales, occurrence and fate. J Hazard Mater. 2019;361:169–186. Doi:10.1016/j.jhazmat.2018.08.075
  • Hernández F, Calısto-Ulloa N, Gómez-Fuentes C, et al. Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. J Hazard Mater. 2019;363:447–556. Doi:10.1016/j.jhazmat.2018.07.027
  • Pan C, Bao Y, Xu B. Seasonal variation of antibiotics in surface water of Pudong new area of Shanghai: China and the occurrence in typical wastewater sources. Chemosphere. 2020;239:124816. Doi:10.1016/j.chemosphere.2019.124816
  • Carrillo-Abad J, Mora-Gómez J, García-Gabaldón M, et al. Effect of the CuO addition on a Sb-doped SnO2 ceramic electrode applied to the removal of Norfloxacin in chloride media by electro-oxidation. Chemosphere. 2020;249:126178. Doi:10.1016/j.chemosphere.2020.126178
  • Wu Q, Liu Y, Jing H, et al. Peculiar synergetic effect of γ-Fe2O3 nanoparticles and graphene oxide on MIL-53 (Fe) for boosting photocatalysis. Chem Eng J. 2020;390:124615. Doi:10.1016/j.cej.2020.124615
  • Hanna N, Sun P, Sun Q, et al. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ Int. 2018;114:131–142. Doi:10.1016/j.envint.2018.02.003
  • Wang G, Zhao D, Kou F, et al. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): Kinetics: mechanism and degradation pathway. Chem Eng J. 2018;351:747–755. Doi:10.1016/j.cej.2018.06.033
  • Maia AS, Paíga P, Delerue-Matos C, et al. Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environ Pollut. 2020;259:113927. Doi:10.1016/j.envpol.2020.113927
  • Zhang L, Qin S, Shen L, et al. Bioaccumulation: trophic transfer, and human health risk of quinolones antibiotics in the benthic food web from a macrophyte-dominated shallow lake, North China. Sci Total Environ. 2020;712:136557. Doi:10.1016/j.scitotenv.2020.136557
  • Zhou L, Li N, Owens G, et al. Simultaneous removal of mixed contaminants: copper and norfloxacin, from aqueous solution by ZIF-8. Chem Eng J. 2019;362:628–637. Doi:10.1016/j.cej.2019.01.068
  • Xiang Y, Yang X, Xu Z, et al. Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: effects and mechanisms. Sci Total Environ. 2020;709:136079. Doi:10.1016/j.scitotenv.2019.136079
  • Yao B, Luo Z, Du S, et al. Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: adsorption performances and mechanisms. Bioresour Technol. 2021;340:125698. Doi:10.1016/j.biortech.2021.125698
  • Yao B, Luo Z, Zhi D, et al. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: a review. J Hazard Mater. 2021;403:123674. Doi:10.1016/j.jhazmat.2020.123674
  • Villa K, Parmar J, Vilela D, et al. Core–shell microspheres for the ultrafast degradation of estrogen hormone at neutral pH. RSC Adv. 2018;8:5840–5847. Doi:10.1039/C7RA11705A
  • Wu S, Yang D, Zhou Y, et al. Simultaneous degradation of p-arsanilic acid and inorganic arsenic removal using M-rGO/PS Fenton-like system under neutral conditions. J Hazard Mater. 2020;399:123032. Doi:10.1016/j.jhazmat.2020.123032
  • Luo H, Zhao Y, He D, et al. Hydroxylamine-facilitated degradation of rhodamine B (RhB) and p-nitrophenol (PNP) as catalyzed by Fe@Fe2O3 core-shell nanowires. J Mol Liq. 2019;282:13–22. Doi:10.1016/j.molliq.2019.02.136
  • Tu Y, Peng Z, Huang J, et al. Preparation and characterization of magnetic biochar nanocomposites via a modified solvothermal method and their use as efficient heterogeneous Fenton-like catalysts. Ind Eng Chem Res. 2020;59(5):1809–1821
  • Wang J, Liu C, Qi J, et al. Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe0-Fe2O3 nanoparticles embedded ordered mesoporous carbon composite catalyst. Environ Pollut. 2018;243:1068–1077. Doi:10.1016/j.envpol.2018.09.057
  • Wang L, Yang J, Li Y, et al. Removal of chlorpheniramine in a nanoscale zero-valent iron induced heterogeneous Fenton system: influencing factors and degradation intermediates. Chem Eng J. 2016;284:1058–1067. Doi:10.1016/j.cej.2015.09.042
  • Kattel E, Trapido M, Dulova N. Treatment of landfill leachate by continuously reused ferric oxyhydroxide sludge-activated hydrogen peroxide. Chem Eng J. 2016;304:646–654. Doi:10.1016/j.cej.2016.06.135
  • Yao B, Luo Z, Yang J, et al. FeIIFeIII layered double hydroxide modified carbon felt cathode for removal of ciprofloxacin in electro-Fenton process. Environ Res. 2021;197:111144. Doi:10.1016/j.envres.2021.111144
  • Sun F, Liu H, Wang H, et al. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: a wide range of pH values from 3 to 9. Sci Total Environ. 2020;698:134293.
  • Li Y, Sun J, Sun S-P. Mn2+-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions. J Hazard Mater. 2016;313:193–200. Doi:10.1016/j.jhazmat.2016.04.003
  • Li X, Xiao B, Wu M, et al. In-situ generation of multi-homogeneous/heterogeneous Fe-based Fenton catalysts toward rapid degradation of organic pollutants at near neutral pH. Chemosphere. 2020;245:125663. Doi:10.1016/j.chemosphere.2019.125663
  • Zhu Y, Zhu R, Xi Y, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl Catal, B. 2019;255:117739. Doi:10.1016/j.apcatb.2019.05.041
  • Zhou Y, Wang T, Zhi D, et al. Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review. J Mater Sci. 2019;54:12171–12188. Doi:10.1007/s10853-019-03606-5
  • Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater. 2014;267:194–205. Doi:10.1016/j.jhazmat.2013.12.062
  • Feng Y, Zhong J, Zhang L, et al. Activation of peroxymonosulfate by Fe0@Fe3O4 core-shell nanowires for sulfate radical generation: electron transfer and transformation products. Sep Purif Technol. 2020;247:116942. Doi:10.1016/j.seppur.2020.116942
  • Peng X, Liu X, Zhou Y, et al. New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions. RSC Adv. 2017;7:8755–8761. Doi:10.1039/C6RA27256H
  • Liu S, Feng H, Tang L, et al. Removal of Sb(III) by sulfidated nanoscale zerovalent iron: the mechanism and impact of environmental conditions. Sci Total Environ. 2020;736:139629. Doi:10.1016/j.scitotenv.2020.139629
  • Tang L, Feng HP, Tang J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism. Water Res. 2017;117:175–186. Doi:10.1016/j.watres.2017.03.059
  • Tang J, Tang L, Feng H, et al. pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zerovalent iron under aerobic or anoxic conditions. J Hazard Mater. 2016;320:581–590. Doi:10.1016/j.jhazmat.2016.07.042
  • Dong H, Zhang C, Deng J, et al. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res. 2018;135:1–10. Doi:10.1016/j.watres.2018.02.017
  • He F, Li Z, Shi S, et al. Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environ Sci Technol. 2018;52:8627–8637. Doi:10.1021/acs.est.8b01735
  • Du J, Bao J, Lu C, et al. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Res. 2016;102:73–81. Doi:10.1016/j.watres.2016.06.009
  • Wang C, Ying C, Tang Y, et al. Synergistic effect of Co (II) doping on FeS activating heterogeneous Fenton processes toward degradation of Rhodamine B. Chem Eng J Adv. 2020;4:100044.
  • Liu J, Hu W, Sun M, et al. Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@Fe2O3 core-shell nanomaterials. Environ Technol. 2019;40:3632–3640. Doi:10.1080/09593330.2018.1483972
  • Li Y, Ren C, Zhao Z, et al. Enhancing anaerobic degradation of phenol to methane via solubilizing Fe(III) oxides for dissimilatory iron reduction with organic chelates. Bioresour Technol. 2019;291:121858. Doi:10.1016/j.biortech.2019.121858
  • Yu W, Yang S, Du B, et al. Feasibility and mechanism of enhanced 17β-estradiol degradation by the nano zero valent iron-citrate system. J Hazard Mater. 2020;396:122657. Doi:10.1016/j.jhazmat.2020.122657
  • Clesceri LS, Greenberg AE, Eaton AD. (2005). Standard methods for examination of water &wastewater. 21st ed. Washington (DC): American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF).
  • Brumovský M, Filip J, Malina O, et al. Core–shell Fe/FeS nanoparticles with controlled shell thickness for enhanced trichloroethylene removal. ACS Appl Mater Interfaces. 2020;12:35424–35434. Doi:10.1021/acsami.0c08626
  • Ling Y, Long M, Hu P, et al. Magnetically separable core–shell structural γ-Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis. J Hazard Mater. 2014;264:195–202. Doi:10.1016/j.jhazmat.2013.11.008
  • Xiang M, Huang M, Li H, et al. Nanoscale zero-valent iron/cobalt@mesoporous hydrated silica core–shell particles as a highly active heterogeneous Fenton catalyst for the degradation of tetrabromobisphenol A. Chem Eng J. 2021;417:129208. Doi:10.1016/j.cej.2021.129208
  • Duarte J, Solano AMS, Arguelho MLPM, et al. Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes. J Water Process Eng. 2018;22:250–257. Doi:10.1016/j.jwpe.2018.02.012
  • Shi J, Ai Z, Zhang L. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles. Water Res. 2014;59:145–153. Doi:10.1016/j.watres.2014.04.015
  • Ganiyu SO, Zhou M, Martínez-Huitle CA. Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl Catal, B. 2018;235:103–129. Doi:10.1016/j.apcatb.2018.04.044
  • Bokare AD, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater. 2014;275:121–135. Doi:10.1016/j.jhazmat.2014.04.054
  • Jiang W, Dionysiou DD, Kong M, et al. Utilization of formic acid in nanoscale zero valent iron-catalyzed Fenton system for carbon tetrachloride degradation. Chem Eng J. 2020;380:122537. Doi:10.1016/j.cej.2019.122537
  • Shao Y, Gao Y, Yue Q, et al. Degradation of chlortetracycline with simultaneous removal of copper (II) from aqueous solution using wheat straw-supported nanoscale zero-valent iron. Chem Eng J. 2020;379:122384. Doi:10.1016/j.cej.2019.122384
  • Xu L, Yan K, Mao Y, et al. Enhancing the dioxygen activation for arsenic removal by Cu0 nano-shell-decorated nZVI: synergistic effects and mechanisms. Chem Eng J. 2020;384:123295. Doi:10.1016/j.cej.2019.123295
  • Thomas N, Dionysiou DD, Pillai SC. Heterogeneous Fenton catalysts: a review of recent advances. J Hazard Mater. 2021;404:124082. Doi:10.1016/j.jhazmat.2020.124082
  • Cui R, Yang B, Li S, et al. Heterogeneous Fenton catalysts prepared from modified-fly ash for NOx removal with H2O2. Catal Commun. 2019;119:180–184. Doi:10.1016/j.catcom.2018.08.018
  • Du X, Fu W, Su P, et al. Internal-micro-electrolysis-enhanced heterogeneous electro-Fenton process catalyzed by Fe/Fe3C@PC core–shell hybrid for sulfamethazine degradation. Chem Eng J. 2020;398:125681. Doi:10.1016/j.cej.2020.125681
  • Nie Y, Hu C, Zhou L, et al. Degradation characteristics of humic acid over iron oxides/Fe0 core–shell nanoparticles with UVA/H2O2. J Hazard Mater. 2010;173:474–479. Doi:10.1016/j.jhazmat.2009.08.109
  • Zorzo C F, Inticher J J, Borba F H, et al. Oxidative degradation and mineralization of the endocrine disrupting chemical bisphenol-A by an eco-friendly system based on UV-solar/H2O2 with reduction of genotoxicity and cytotoxicity levels. Sci Total Environ. 2021;770:145296.
  • Wang Z, Song B, Li J, et al. Degradation of norfloxacin wastewater using kaolin/steel slag particle electrodes: performance, mechanism and pathway. Chemosphere. 2021;270:128652. Doi:10.1016/j.chemosphere.2020.128652
  • Song B, Wang Z, Li J, et al. Volcanic rock: a new type of particle electrode with excellent performance, which can efficiently degrade norfloxacin. Chem Eng J. 2021;426:131940. Doi:10.1016/j.cej.2021.131940
  • Huang M, Zhou T, Wu X, et al. Distinguishing homogeneous-heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (Fe3O4/UV/oxalate) and the interfacial reaction mechanism. Water Res. 2017;119:47–56. Doi:10.1016/j.watres.2017.03.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.