458
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preparation of nano-ferrous sulfide modified with phytate for efficient Cr(VI) removal in aqueous solutions

, , , , , , , , & show all
Pages 2597-2606 | Received 24 Oct 2021, Accepted 23 Jan 2022, Published online: 15 Feb 2022

References

  • Cheng H, Zhou T, Li Q, et al. Anthropogenic chromium emissions in China from 1990 to 2009. PloS One. 2009;9(2): e87753. doi:10.1371/journal.pone.0087753.
  • Yang HP, Hong M, Chen SY. Removal of Cr (VI) with nano-FeS and CMC-FeS and transport properties in porous media. Environ Technol. 2019;41(22):2935–2945. doi:10.1080/09593330.2019.1588921.
  • Ghanim B, Leahy JJ, O'Dwyer TF, et al. Removal of hexavalent chromium (Cr(VI)) from aqueous solution using acid modified poultry litter derived hydrochar: adsorption, regeneration and reuse. J Chem Technol Biot (Early View). 2021;97(1):55–66. doi:10.1002/jctb.6904.
  • Kelepertzis E. Invetigating the sources and potential health risks of environment contaminants in the soils and drinking waters from the rural clusters in Thiav area (Greece). Ecotoxicol Enviro Saf. 2001;100(2):1–42. doi:10.1016/j.ecoenv.2013.09.030.
  • Costa M, Klein CB. Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol. 2006;36(2):155–163. doi: 10.1080/10408440500534032.
  • Shahid M, Shamshad S, Rafiq M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere. 2017;178:513–533. doi:10.1016/j.chemosphere.2017.03.074.
  • Liu YY, Xiao WY, Wang JJ, et al. Optimized synthesis of FeS nanoparticles with a high Cr (VI) removal capability. J Nanomater. 2016;48:1687–4110. doi:10.1155/2016/7817296.
  • Wang T, Liu Y, Wang J, et al. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. J Environ Manage. 2019;231:679–686. doi:10.1016/j.jenvman.2018.10.085.
  • Wu J, Wang XB, Zeng RJ. Reactivity enhancement of iron sulfide nanoparticles stabilized by sodium alginate: taking Cr (VI) removal as an example. J Hazard Mater. 2017;333:275–284. doi:10.1016/j.jhazmat.2017.03.023.
  • Wang XB, Liu J, Zhao DL, et al. Preparation of CMC-stabilized FeS nanoparticles and their enhanced performance for Cr (VI) removal. Adv Mat Res. 2011;287–290:96–99. doi:10.4028/www.scientific.net/AMR.287-290.96.
  • Lyu HH, Tang JC, Huang Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem Eng J. 2017;322:516–524. doi:10.1016/j.cej.2017.04.058.
  • Abukhadra MR, Adlii A, Bakry BM. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water. Int J Biol Macromol. 2019;126:402–413. doi:10.1016/j.ijbiomac.2018.12.225.
  • Yao YR, Mi N, He C, et al. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr (VI). Sep Purif Technol. 2020a;240:116623. doi:10.1016/j.seppur.2020.116623.
  • Yao YR, Mi N, He C, et al. A novel colloid composited with polyacrylate and nano ferrous sulfide and its efficiency and mechanism of removal of Cr (VI) from water. J Hazard Mater. 2020b;399:123082. doi:10.1016/j.jhazmat.2020.123082.
  • Zhang H, Peng L, Chen A, et al. Chitosan-stabilized FeS magnetic composites for chromium removal: characterization, performance, mechanism, and stability. Carbohyd Polym. 2019;214:276–285. doi:10.1016/j.carbpol.2019.03.056.
  • Qin HJ, Li JX, Bao QQ, et al. Role of dissolved oxygen in metal (loid) removal by zerovalent iron at different pH: its dependence on the removal mechanisms. RSC Adv. 2016;6(55):50144–50152. doi:10.1039/C6RA08886D.
  • Zheng KW, Li W, Wang W, et al. Preparation and characterization of carboxymethyl-chitosan/phytate composite membranes for adsorption in transformer oil. Int J Biol Macromol. 2019;132:658–665. doi:10.1016/j.ijbiomac.2019.03.239.
  • Oatway L, Vasanthan T, Helm JH. Phytic acid. Food Rev Int. 2001;17(4):419–431. doi:10.1081/FRI-100108531.
  • Zhu J, Wakisaka M. Finding of phytase: understanding growth promotion mechanism of phytic acid to freshwater microalga euglena gracilis. Bioresour Technol. 2019;296:122343. doi:10.1016/j.biortech.2019.122343.
  • Kong AQ, He BQ, Liu GR, et al. A novel Green biosorbent from chitosan modified by phytate for copper (II) ion removal. Polym Adv Technol. 2017;29(1):285–293. doi:10.1002/pat.4113.
  • Cai Y, Ma Y, Feng J, et al. Insight into the performance and mechanism of low-cost phytic acid modified Zn-Al-Ti LMO for U(VI) removal. Chem Eng J. 2020;402:125510. doi:10.1016/j.cej.2020.125510.
  • Huang JQ, Xiong S, Long QW, et al. Evaluation of food additive phytate as a novel draw solute for forward osmosis. Desalination. 2018;448:87–92. doi:10.1016/j.desal.2018.10.004.
  • Stefano CD, Milea D, Porcino N, et al. Speciation of phytate ion in aqueous solution. sequestering ability toward mercury(II) cation in NaClaq at different ionic strengths. J Agric Food Chem. 2006;54(4):1459–1466. doi:10.1021/jf0522208.
  • Turner BL, Cheesman AW, Godage HY, et al. Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy. Environ Sci Technol. 2012;46:4994–5002. doi:10.1021/es204446z.
  • Yan YP, Wan B, Liu F, et al. Adsorption-desorption of myo-inositol hexakisphosphate on hematite. Soil Sci. 2014;179:476–485. doi:10.1097/SS.0000000000000091.
  • Crea P, Robertis AD, Stefano CD, et al. Speciation of phytate ion in aqueous solution. sequestration of magnesium and calcium by phytate at different temperatures and ionic strengths, in NaCl(aq). Biophys Chem. 2006;124(1):18–26. doi:10.1016/j.bpc.2006.05.027.
  • Stodolak B, Starzyńska A, Czyszczoń M, et al. The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chem. 2007;101(3):1041–1045. doi:10.1016/j.foodchem.2006.02.061.
  • Gu RY, Yang WG. Optimization of mixed antioxidant for Xiangxi sausage by response surface methodology. Food Fermentation Ind. 2016;42(12):138–143. doi:10.13995/j.cnki.11-1802/ts.201612025.
  • Graf E. Application of phytic acid. J Oil Fat Ind. 1983;60(11):1861–1867. doi:10.1007/BF02901539.
  • Gong W. A real time in situ ATR-FTIR spectroscopic study of linear phosphate adsorption on titania surfaces. Int J Miner Process. 2001;63(3):147–165. doi:10.1016/S0301-7516(01)00045-X.
  • Parasa H, Pranjal G, Sangeeta H, et al. A Green synthesis of 3, 4- dihydropyrimidin-2-ones and 1,5-benzodiazepines catalyzed by Sn (HPO4)2. H2O nanodisks under solvent-free condition at room temperature. Green Chem Lett Rev. 2011;4(4):327–339. doi:10.1080/17518253.2011.571719.
  • Chen L F, Ling B SY, Jiang XY, et al. Removal of Cr(VI) in water by Fe3O4 / IP6. J Shanghai Norm Univ. 2014;43(6):629–634. doi:10.3969/J.ISSN.1000-5137.2014.06.013.
  • Lnyang M, Gao B, Zimmerman A, et al. Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chem Eng J. 2014;236:39–46. doi:10.1016/j.cej.2013.09.074.
  • Luo JM, Luo XB, Crittenden J, et al. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ Sci Technol. 2015;49(18):11115–11124. doi:10.1021/acs.est.5b02903.
  • Yin L, Mi N, Yao YR, et al. Efficient removal of Cr(VI) by tannic acid-modified FeS nanoparticles: performance and mechanisms. Water Sci Eng. 2021;14(3):210–218. doi:10.1016/j.wse.2021.08.006.
  • Gong Y, Liu Y, Xiong Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry. Environ Sci Technol. 2014;48(7):3986–3994. doi:10.1021/es404418a.
  • Han YS, Gallegos TJ, Demond AH, et al. FeS-coated sand for removal of arsenic (III) under anaerobic conditions in permeable reactive barriers. Water Res. 2011;45(2):593–604. doi:10.1016/j.watres.2010.09.033.
  • Zhao YH, Wang CY, Li YY, et al. Experimental study on FeS to treat Cr (VI)-bearing waste water. J Shenyang Jianzhu Univ. 2008;24(6):117–119.
  • Lv D, Zhou JS, Cao Z, et al. Mechanism and influence factors of chromium (VI) removal by sulfide modified nanoscale zerovalent iron. Chemosphere. 2019;224:306–315. doi:10.1016/j.chemosphere.2019.02.109.
  • Kim EJ, Murugesan K, Kim JH, et al. Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: effects of water chemistry. Ind Eng Chem Res. 2013;52(27):9343–9350. doi:10.1021/ie400165a.
  • Li Q Z, Liao YG YY, Huang J, et al. Removal of hexavalent chromium using biogenic mackinawite (FeS)-deposited kaolinite. J Colloid Interf Sci. 2020;572:236–245. doi:10.1016/j.jcis.2020.03.077.
  • Xie BH, Shan C, Xu Z, et al. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: reduction to Cr(III) and in situ Cr(III) precipitation. Chem Eng J. 2017;308:791–797. doi:10.1016/j.cej.2016.09.123.
  • Jeong HY, Han YS, Park SW, et al. Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization. Geochim Cosmochim Acta. 2010;74(11):3182–3198. doi:10.1016/j.gca.2010.03.012.
  • Fendorf SE, Li G. Kinetics of chromate reduction by ferrous iron. Environ Sci Technol. 1996;30(5):1614–1617. doi:10.1021/es950618m.
  • Wu J. Effects of sulfidated iron-based nano-composites on the removal and fate of contaminants and basic mechanisms. University of Science and Technology of China. 2019;doi:10.27517/d.cnki.gzkju.2019.000075.
  • Liu H, Wang Q, Wang C, et al. Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment. Chem Eng J. 2013;215–216:90–95. doi:10.1016/j.cej.2012.11.010.
  • Liu YQ, Majetich SA, Tilton RD, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol. 2005;39(5):1338–1345. doi:10.1021/es049195r.
  • Du J, Bao J, Lu C, et al. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles. Water Res. 2016;102(1):73–81. doi:10.1016/j.watres.2016.06.009.
  • Wang JW, Du JY, Gui MY, et al. Variation in stability of Fe S-immobilized heavy metal in oxidizing environments and the mechanism. Acta Scientiae Circumstantiae. 2020;40(2):563–573. doi:10.13671/j.hjkxxb.2019.0381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.