218
Views
0
CrossRef citations to date
0
Altmetric
Articles

Electrochemical degradation of azo dye using granular activated carbon electrodes loaded with bimetallic oxides

, , , , &
Pages 2631-2647 | Received 04 Aug 2021, Accepted 22 Jan 2022, Published online: 19 Feb 2022

References

  • Benkhaya S, M'rabet S, Harfi AE. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 2020;6:e03271. doi:10.1016/j.heliyon.2020.e03271
  • Metivier-Pignon H, Faur C, Cloirec PL. Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms. Chemosphere. 2007;66:887–893. doi:10.1016/j.chemosphere.2006.06.032
  • Meng G, Liu B, Sun M, et al. Sludge-based activated carbon catalyzed H2O2 oxidation of reactive azo dyes. Environ Technol. 2021;42:682–693. doi:10.1080/09593330.2019.1643409
  • Tan X, Zhao Y, Sun W, et al. Three-dimensional hierarchically porous PbO2 electrode for electrochemical degradation of m-cresol. J Electroanal Chem. 2020;856:113726. doi:10.1016/j.jelechem.2019.113726
  • Hu E, Wu X, Shang S, et al. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Cleaner Prod. 2016;112:4710–4718. doi:10.1016/j.jclepro.2015.06.127
  • Almeida LC, Silva BF, Zanoni MVB. Combined photoelectrocatalytic/electro-fenton process using a Pt/TiO2NTs photoanode for enhanced degradation of an azo dye: A mechanistic study. J Electroanal Chem. 2014;734:43–52. doi:10.1016/j.jelechem.2014.09.035
  • Golshan M, Zare M, Goudarzi G, et al. Fe3O4@HAP-enhanced photocatalytic degradation of acid Red 73 in aqueous suspension: optimization, kinetic, and mechanism studies. Mater Res Bull. 2017;91:59–67. doi:10.1016/j.materresbull.2017.03.006
  • Xia Y, Wang G, Guo L, et al. Electrochemical oxidation of acid orange 7 azo dye using a PbO2 electrode: parameter optimization, reaction mechanism and toxicity evaluation. Chemosphere. 2020;241:125010. doi:10.1016/j.chemosphere.2019.125010
  • Pacheco-Alvarez MOA, Picos A, Perez-Segura T, et al. Proposal for highly efficient electrochemical discoloration and degradation of azo dyes with parallel arrangement electrodes. J Electroanal Chem. 2019;838:195–203. doi:10.1016/j.jelechem.2019.03.004
  • Smita V, Quaff AR, Pandey ND, et al. Decolorization and mineralization of C.I. direct red 28 azo dye by ozonation. Desalin Water Treat. 2016;57:4135–4145. doi:10.1080/19443994.2014.992047
  • Trotte NSF, Alzamora M, Sánchez DR, et al. Removal of methyl orange by heterogeneous Fenton catalysts prepared using glycerol as green reducing agent. Environ Technol. 2018;39:2822–2833. doi:10.1080/09593330.2017.1367038
  • Sadhu SP, Ruparelia JP, Patel UD. Homogeneous photocatalytic degradation of azo dye reactive black 5 using Fe (III) ions under visible light. Environ Technol. 2022;43:199–206. doi:10.1080/09593330.2020.1782995
  • Martínez-Huitle CA, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev. 2006;35:1324–1340. doi:10.1039/b517632h
  • Hu Z, Cai J, Song G, et al. Anodic oxidation of organic pollutants: anode fabrication, process hybrid and environmental applications. Curr Opin Electrochem. 2021;26:100659. doi:10.1016/j.coelec.2020.100659
  • Sowmiya S, Gandhimathi R, Ramesh ST, et al. Granular activated carbon as a particle electrode in three-dimensional electrochemical treatment of reactive black B from aqueous solution. Environ Prog Sustain Energy. 2016;35:1616–1622. doi:10.1002/ep.12396
  • Yu J, Zou J, Xu P, et al. Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes. J Cleaner Prod. 2020;251:119744. doi:10.1016/j.jclepro.2019.119744
  • Salazar-Banda GR, Santos GdOS, Duarte Gonzaga IM, et al. Developments in electrode materials for wastewater treatment. Curr Opin Electrochem. 2021;26:100663. doi:10.1016/j.coelec.2020.100663
  • Teng X, Wang Z, Wu X, et al. Preparation and performance of fly-ash particle electrode. Sci Adv Mater. 2019;11:88–92. doi:10.1166/sam.2019.3403
  • Zhang Z, Feng Y, Liu N, et al. Preparation of Sn/Mn loaded steel slag zeolite particle electrode and its removal effect on rhodamine B(RhB). J Water Process Eng. 2020;37:101417. doi:10.1016/j.jwpe.2020.101417
  • Ghanbarlou H, Nasernejad B, Fini MN, et al. Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system. Chem Eng J. 2020;395:125025. doi:10.1016/j.cej.2020.125025
  • Zhang B, Hou Y, Yu Z, et al. Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/kaolin particle electrodes: electrodes optimization, kinetics, influencing factors and mechanism. Sep Purif Technol. 2019;210:60–68. doi:10.1016/j.seppur.2018.07.084
  • Li F, Xie D, Zhao Y, et al. Effects of adsorption properties of particle electrodes on the degradation of acid red 14 using three-dimensional electrode system. Desalin Water Treat. 2017;78:263–272. doi:10.5004/dwt.2017.20616
  • Vijayalakshmi G, Archana D, Prerana S, et al. Wet peroxidation of resorcinol catalyzed by copper impregnated granular activated carbon. J Environ Manag. 2018;223:825–833. doi:10.1016/j.jenvman.2018.06.093
  • Zhan J, Li Z, Yu G, et al. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes. Sep Purif Technol. 2019;208:12–18. doi:10.1016/j.seppur.2018.06.030
  • Li X, Wu Y, Zhu W, et al. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields. Electrochim Acta. 2016;220:276–284. doi:10.1016/j.electacta.2016.09.109
  • Xiao X, Tao L, Li M, et al. Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chem Sci. 2018;9:1970–1975. doi:10.1039/c7sc04849a
  • Genova I, Tsoncheva T, Dimitrov M, et al. Cobalt ferrite nanoparticles hosted in activated carbon from renewable sources as catalyst for methanol decomposition. Catal Commun. 2014;55:43–48. doi:10.1016/j.catcom.2014.06.013
  • Kong W, Wang B, Ma H, et al. Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes. J Hazard Mater. 2006;137:1532–1537. doi:10.1016/j.jhazmat.2006.04.037
  • Zhang W, Ye W, Hu X, et al. Electrocatalytic degradation of humic acid using particle electrodes of activated carbon loaded with metallic cobalt. Chemosphere. 2021;263:128200. doi:10.1016/j.chemosphere.2020.128200
  • Brillas E, Martínez-Huitle CA. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal, B. 2015;166-167:603–643. doi:10.1016/j.apcatb.2014.11.016
  • Guan Q, Kong Z, Xie Z, et al. Catalytic gasification of phenol in supercritical water over bimetallic Co-Ni/AC catalyst. Environ Technol. 2019;40:2182–2190. doi:10.1080/09593330.2018.1439111
  • Hafaiedh NB, Fourcade F, Bellakhal N, et al. Iron oxide nanoparticles as heterogeneous electro-Fenton catalysts for the removal of AR18 azo dye. Environ Technol. 2020;41:2146–2153. doi:10.1080/09593330.2018.1557258
  • Li X, Yi L, Zhao L, et al. Synthesis of coal fly ash supported MnO2 for the enhanced degradation of acid Red 73 in the presence of peroxymonosulfate. Environ Technol. 2021;42:81–92. doi:10.1080/09593330.2019.1620868
  • Zhu Y, Qiu S, Deng F, et al. Three-dimensional nickel foam electrode for efficient electro-Fenton in a novel reactor. Environ Technol. 2020;41:730–740. doi:10.1080/09593330.2018.1509890
  • Nawaz MA, Saif M, Li M, et al. Tailoring the synergistic dual-decoration of (Cu–Co) transition metal auxiliaries in Fe-oxide/zeolite composite catalyst for the direct conversion of syngas to aromatics. Catal Sci Technol. 2021;11:7992–8006. doi:10.1039/D1CY01717A
  • Fu J, He X, Zhu J, et al. Three-dimensional electro-Fenton oxidation of landfill leachate concentrates using MnO2-doped TiO2-coated granular activated carbon as catalytic particle electrodes. Int J Electrochem Sci. 2018;13:5872–5887. doi:10.20964/2018.06.44
  • Li S, Gao Y, Li N, et al. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ Sci. 2021;14:1897–1927. doi:10.1039/d0ee03697h
  • Xu X, Zhao J, Bai S, et al. Preparation of novel Ti-based MnOx electrodes by spraying method for electrochemical oxidation of acid red B. Water Sci Technol. 2019;80:365–376. doi:10.2166/wst.2019.282
  • Shu H, Chang M, Liu J. Reductive decolorization of acid blue 113 azo dye by nanoscale zero-valent iron and iron-based bimetallic particles. Desalin Water Treat. 2016;57:7963–7975. doi:10.1080/19443994.2015.1061955
  • Cai C, Wang L, Gao H, et al. Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of acid orange 7 in water. J Environ Sci. 2014;26:1267–1273. doi:10.1016/S1001-0742(13)60598-7
  • Ismail AS, Casavola M, Liu B, et al. Atomic-scale investigation of the structural and electronic properties of cobalt-iron bimetallic fischer-tropsch catalysts. ACS Catal. 2019;9:7998–8011. doi:10.1021/acscatal.8b04334
  • Ji Q, Zhu F, Lei Y, et al. Fe-Co-SBA assisted by visible light can effectively activate NaHSO3 or H2O2 for enhanced degradation of orange II: activation of NaHSO3 versus H2O2. Microporous Mesoporous Mater. 2021;315:110902. doi:10.1016/j.micromeso.2021.110902.
  • Liu P, Chen H, Chang X, et al. Novel method of preparing CoFe2O4/graphene by using steel rolling sludge for supercapacitor. Electrochim Acta. 2017;231:565–574. doi:10.1016/j.electacta.2017.02.088
  • Xu J, Gao N, Zhao D, et al. Enhanced iron efficiency of Fe-impregnated granular activated carbon (Fe-GAC) for arsenate removal via Fe (II)–H2O2 method. J Taiwan Ins Chem Eng. 2016;67:443–452. doi:10.1016/j.jtice.2016.07.036
  • Nappini S, Magnano E, Bondino F, et al. Surface charge and coating of CoFe2O4 nanoparticles: evidence of preserved magnetic and electronic properties. J Phys Chem C. 2015;119:25529–25541. doi:10.1021/acs.jpcc.5b04910
  • Shanmugavani A, Kalpana D, Kalai Selvan R. Electrochemical properties of CoFe2O4 nanoparticles as negative and Co(OH)2 and Co2Fe(CN)6 as positive electrodes for supercapacitors. Mater Res Bull. 2015;71:133–141. doi:10.1016/j.materresbull.2015.04.018
  • Li S, Wang Y, Sun J, et al. Hydrothermal synthesis of Fe-doped Co3O4 urchin-like microstructures with superior electrochemical performances. J Alloys Compd. 2020;821:153507. doi:10.1016/j.jallcom.2020.154967
  • Martínez-Huitle CA, Panizza M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem. 2018;11:62–71. doi:10.1016/j.coelec.2018.07.010
  • Ganiyu SO, Martínez-Huitle CA. The use of renewable energies driving electrochemical technologies for environmental applications. Curr Opin Electrochem. 2020;22:211–220. doi:10.1016/j.coelec.2020.07.007
  • Li X, Xu J, Cheng J, et al. TiO2-SiO2/GAC particles for enhanced electrocatalytic removal of acid orange 7 (AO7) dyeing wastewater in a three-dimensional electrochemical reactor. Sep Purif Technol. 2017;187:303–310. doi:10.1016/j.seppur.2017.06.058
  • Sun Y, Li P, Zheng H, et al. Electrochemical treatment of chloramphenicol using Ti-Sn/gamma-Al2O3 particle electrodes with a three-dimensional reactor. Chem Eng J. 2017;308:1233–1242. doi:10.1016/j.cej.2016.10.072
  • Wang Y, Shen C, Zhang M, et al. The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: influencing factors, reaction pathways and energy demand. Chem Eng J. 2016;296:79–89. doi:10.1016/j.cej.2016.03.093
  • Zhang C, Zhou L, Yang J, et al. Nanoscale zero-valent iron/AC as heterogeneous Fenton catalysts in three-dimensional electrode system. Environ Sci Pollut Res. 2014;21:8398–8405. doi:10.1007/s11356-014-2791-1
  • Bockelmann M, Becker M, Reining L, et al. Passivation of zinc anodes in alkaline electrolyte: part II. influence of operation parameters. J Electrochem Soc. 2019;166:A1132–A1139. doi:10.1149/2.0791906jes
  • Zhang W, Xie D, Li X, et al. Electrocatalytic removal of humic acid using cobalt-modified particle electrodes. Appl Catal, A. 2018;559:75–84. doi:10.1016/j.apcata.2018.06.014
  • Es'haghzade Z, Pajootan E, Bahrami H, et al. Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J Taiwan Ins Chem Eng. 2017;71:91–105. doi:10.1016/j.jtice.2016.11.015
  • Davis J, Baygents JC, Farrell J. Understanding persulfate production at boron doped diamond film anodes. Electrochim Acta. 2014;150:68–74. doi:10.1016/j.electacta.2014.10.104
  • Chen H, Feng Y, Suo N, et al. Preparation of particle electrodes from manganese slag and its degradation performance for salicylic acid in the three-dimensional electrode reactor (TDE). Chemosphere. 2019;216:281–288. doi:10.1016/j.chemosphere.2018.10.097
  • Fontmorin JM, Castillo RCB, Tang WZ, et al. Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water Res. 2016;99:24–32. doi:10.1016/j.watres.2016.04.053
  • Jiang JL, Jia Z, He Q, et al. Synergistic function of iron and cobalt in metallic glasses for highly improving persulfate activation in water treatment. J Alloys Compd. 2020;822:153574. doi:10.1016/j.jallcom.2019.153574.
  • Chen M, He Y, Gu Z. Microwave irradiation activated persulfate and hydrogen peroxide for the treatment of mature landfill leachate effluent from a membrane bioreactor. Sep Purif Technol. 2020;250:117111. doi:10.1016/j.seppur.2020.117111.
  • Hu X, Yu Y, Yang L. Electrocatalytic activity of Ce-PbO2/C anode for acid red B reduction in aqueous solution. J Solid State Electrochem. 2015;19:1599–1609. doi:10.1007/s10008-015-2781-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.