258
Views
0
CrossRef citations to date
0
Altmetric
Articles

Single and binary adsorption of lead and cadmium ions in aqueous solutions and river water by butylamine functionalized vermiculite: performance and mechanism

, , , , , , & show all
Pages 2924-2945 | Received 18 Oct 2021, Accepted 20 Feb 2022, Published online: 17 Mar 2022

References

  • Malakootian M, Yousefi N, Fatehizadeh A, et al. Nickel (II) removal from industrial plating effluent by Fenton process. Environ Eng Manag J. 2015;14:837–842. DOI:10.30638/eemj.2015.093.
  • Ding T, Lin K, Chen J, et al. Causes and mechanisms on the toxicity of layered double hydroxide (LDH) to green algae scenedesmus quadricauda. Sci Total Environ. 2018;635:1004–1011. DOI:10.1016/j.scitotenv.2018.04.222.
  • Shahbazi A, Marnani NN, Salahshoor Z. Synergistic and antagonistic effects in simultaneous adsorption of Pb(II) and Cd(II) from aqueous solutions onto chitosan functionalized EDTA-silane/MgO. Biocatal Agric Biotechnol. 2019;22:101398. DOI:10.1016/j.bcab.2019.101398.
  • Wang Y, Björn LO. Heavy metal pollution in Guangdong Province, China, and the strategies to manage the situation. Front Environ Sci. 2014;2; DOI:10.3389/fenvs.2014.00009.
  • Bansal OP. Health risks of potentially toxic metals contaminated water. In: Heavy metal toxicity in public health. IntechOpen; 2020.
  • Naushad M, Ahamad T, Al-Sheetan KM. Development of a polymeric nanocomposite as a high performance adsorbent for Pb(II) removal from water medium: equilibrium,: kinetic and antimicrobial activity. J Hazard Mater. 2021;407:124816. DOI:10.1016/j.jhazmat.2020.124816.
  • Liu W-J, Zeng F-X, Jiang H, et al. Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SoCl2 activated EDTA. Chem Eng J. 2011;170:21–28. DOI:10.1016/j.cej.2011.03.020.
  • Bhuiyan MAH, Parvez L, Islam MA, et al. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater. 2010;173:384–392. DOI:10.1016/j.jhazmat.2009.08.085.
  • McConnell JR, Wilson AI, Stohl A, et al. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proc Natl Acad Sci USA. 2018;115:5726. DOI:10.1073/pnas.1721818115.
  • Zeng Q, Huang Y, Huang L, et al. High adsorption capacity and super selectivity for Pb(II) by a novel adsorbent: nano humboldtine/almandine composite prepared from natural almandine. Chemosphere. 2020;253:126650. DOI:10.1016/j.chemosphere.2020.126650.
  • Li Z, Gong Y, Zhao D, et al. Field assessment of carboxymethyl cellulose bridged chlorapatite microparticles for immobilization of lead in soil: effectiveness,: long-term stability, and mechanism. Sci Total Environ. 2021;781:146757. DOI:10.1016/j.scitotenv.2021.146757.
  • Deng X, Lü L, Li H, et al. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J Hazard Mater. 2010;183:923–930. DOI:10.1016/j.jhazmat.2010.07.117.
  • González N, Calderón J, Rúbies A, et al. Dietary intake of arsenic: cadmium, mercury and lead by the population of catalonia, Spain: analysis of the temporal trend. Food Chem Toxicol. 2019;132:110721. DOI:10.1016/j.fct.2019.110721.
  • Thabede PM, Shooto ND, Xaba T, et al. Adsorption studies of toxic cadmium(II) and chromium(VI) ions from aqueous solution by activated black cumin (Nigella sativa) seeds. J Environ Chem Eng. 2020;8:104045. DOI:10.1016/j.jece.2020.104045.
  • Ge H, Wang J. Ear-like poly (acrylic acid)-activated carbon nanocomposite: a highly efficient adsorbent for removal of Cd(II) from aqueous solutions. Chemosphere. 2017;169:443–449. DOI:10.1016/j.chemosphere.2016.11.069.
  • Malakootian M, Shahesmaeili A, Faraji M, et al. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: a systematic review and meta-analysis. Process Saf Environ Prot. 2020;134:292–307. DOI:10.1016/j.psep.2019.12.004.
  • Malakootian M, Mahdizadeh H, Nasiri A, et al. Investigation of the efficiency of microbial desalination cell in removal of arsenic from aqueous solutions. Desalination. 2018;438:19–23. DOI:10.1016/j.desal.2018.03.025.
  • Mahvi AH, Malakootian M, Heidari MR. Comparison of polyaluminum silicate chloride and electrocoagulation process,: in natural organic matter removal from surface water in Ghochan, Iran. J Water Chem Technol. 2011;33:377–385. DOI:10.3103/S1063455X11060051.
  • Ahmed Z, Wu P, Xu Y, et al. Enhanced single and simultaneous As(III) adsorption in pearl river delta water by hexylamine functionalized vermiculite. Water 2021;13:2412.
  • Shahrokhi-Shahraki R, Benally C, El-Din MG, et al. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms. Chemosphere. 2021;264:128455. DOI:10.1016/j.chemosphere.2020.128455.
  • He P, Wang Q, Fu S, et al. Hydrothermal transformation of geopolymers to bulk zeolite structures for efficient hazardous elements adsorption. Sci Total Environ. 2021;767:144973. DOI:10.1016/j.scitotenv.2021.144973.
  • Çermikli E, Şen F, Altıok E, et al. Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process. Desalination. 2020;491:114504. DOI:10.1016/j.desal.2020.114504.
  • Naiya TK, Chowdhury P, Bhattacharya AK, et al. Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chem Eng J. 2009;148:68–79. DOI:10.1016/j.cej.2008.08.002.
  • Khader EH, Mohammed TJ, Albayati TM. Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution. Desalin Water Treat. 2021;229:372–383.
  • Zheng C, Wu Q, Hu X, et al. Adsorption behavior of heavy metal ions on a polymer-immobilized amphoteric biosorbent: surface interaction assessment. J Hazard Mater. 2021;403:123801. DOI:10.1016/j.jhazmat.2020.123801.
  • Vakili M, Rafatullah M, Ibrahim MH, et al. Oil palm biomass as an adsorbent for heavy metals. Rev Environ Contam Toxicol. 2014; 232:61–88.
  • Kadhum ST, Alkindi GY, Albayati TM, et al. Determination of chemical oxygen demand for phenolic compounds from oil refinery wastewater implementing different methods. Desalin Water Treat. 2021;231:44–53.
  • Li X, Mei Q, Chen L, et al. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Res. 2019;157:228–237. DOI:10.1016/j.watres.2019.03.069.
  • Otunola BO, Ololade OO. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ Technol Innov. 2020;18:100692, DOI:10.1016/j.eti.2020.100692.
  • Crini, G.; Badot, P.-M. Sorption processes and pollution: conventional and non-conventional sorbents for pollutant removal from wastemasters. Presses Univ. Franche-Comté: 2011.
  • Yang S, Huang Z, Li C, et al. Individual and simultaneous adsorption of tetracycline and cadmium by dodecyl dimethyl betaine modified vermiculite. Colloids Surf, A. 2020;602:125171. DOI:10.1016/j.colsurfa.2020.125171.
  • Osmolovskiy AA, Popova EA, Kreyer VG, et al. Vermiculite as a new carrier for extracellular protease production by Aspergillus spp. under solid-state fermentation. Biotechnol. Rep. 2021;29:e00576. DOI:10.1016/j.btre.2020.e00576.
  • Chen L, Wu P, Chen M, et al. Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl Clay Sci. 2018;159:74–82. DOI:10.1016/j.clay.2017.12.050.
  • Sayari A, Hamoudi S. Periodic mesoporous silica-based organic−inorganic nanocomposite materials. Chem Mater. 2001;13:3151–3168. DOI:10.1021/cm011039l.
  • Tomina VV, Stolyarchuk NV, Melnyk IV, et al. Composite sorbents based on porous ceramic substrate and hybrid amino- and mercapto-silica materials for Ni(II) and Pb(II) ions removal. Sep Purif Technol. 2017;175:391–398. DOI:10.1016/j.seppur.2016.11.040.
  • Ge Q, Liu H. Tunable amine-functionalized silsesquioxane-based hybrid networks for efficient removal of heavy metal ions and selective adsorption of anionic dyes. Chem Eng J. 2021;131370. DOI:10.1016/j.cej.2021.131370.
  • Vareda JP, Durães L. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials. Environ Technol. 2019;40:529–541. DOI:10.1080/09593330.2017.1397766.
  • Khan MN, Chowdhury M, Rahman MM. Bio-based amphoteric aerogel derived from amine-modified clay enriched chitosan/alginate for adsorption of organic dyes and chromium (VI) ions from aqueous solution. Mater Today Sustain. 2021;100077. DOI:10.1016/j.mtsust.2021.100077.
  • Ahmed Z, Wu P, Jiang L, et al. Enhanced simultaneous adsorption of Cd(II) and Pb(II) on octylamine functionalized vermiculite. Colloids Surf, A. 2020;604:125285. DOI:10.1016/j.colsurfa.2020.125285.
  • Kalash KR, Albayati TM. Remediation of oil refinery wastewater implementing functionalized mesoporous materials mcm-41 in batch and continuous adsorption process. Desal Water Treat. 2021;220:130–141.
  • National Center for Biotechnology Information. Butylamine. https://pubchem.ncbi.nlm.nih.gov/compound/Butylamine; 2020 Aug 7.
  • Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe; 1898.
  • Corbett JF. Pseudo first-order kinetics. J Chem Educ. 1972;49:663.
  • Ho Y-S, McKay GJ. Pseudo-second order model for sorption processes. Proc Biochem. 1999;34:451–465.
  • Weber Jr WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 1963;89:31–59.
  • Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. solids. J Am Chem Soc. 1916;38:2221–2295. DOI:10.1021/ja02268a002.
  • Ruthven, DM. Principles of adsorption and adsorption processes. John Wiley & Sons: 1984.
  • Freundlich HJ. Over the adsorption in solution. J Phys Chem. 1906;57:385.
  • Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017;2017:3039817. DOI:10.1155/2017/3039817.
  • Moraes DS, Rodrigues EMS, Lamarão CN, et al. New sodium activated vermiculite process. testing on Cu2+ removal from tailing dam waters. J Hazard Mater. 2019;366:34–38. DOI:10.1016/j.jhazmat.2018.11.086.
  • Avci Duman Y, Tufan G, Kaya AU. Immobilisation of cellulase on vermiculite and the effects on enzymatic kinetics and thermodynamics. Appl Clay Sci. 2020;197:105792. DOI:10.1016/j.clay.2020.105792.
  • Ramis G, Busca G. Ftir spectra of adsorbed n-butylamine. J Mol Struct. 1989;193:93–100. DOI:10.1016/0022-2860(89)80124-3.
  • Xing X, Li N, Cheng J, et al. Synergistic effects of cu species and acidity of cu-zsm-5 on catalytic performance for selective catalytic oxidation of n-butylamine. J Environ Sci. 2020;96:55–63. DOI:10.1016/j.jes.2020.03.015.
  • de Queiroga LNF, Soares PK, Fonseca MG, et al. Experimental design investigation for vermiculite modification: intercalation reaction and application for dye removal. Appl Clay Sci. 2016;126:113–121. DOI:10.1016/j.clay.2016.02.031.
  • Shariatinia Z, Pourzadi N, Darvishi SMR. Tert-butylamine functionalized mcm-41 mesoporous nanoparticles as drug carriers for the controlled release of cyclophosphamide anticancer drug. Surf Interfaces. 2021;22:100842. DOI:10.1016/j.surfin.2020.100842.
  • Liu S, Wu P, Chen M, et al. Amphoteric modified vermiculites as adsorbents for enhancing removal of organic pollutants: bisphenol A and tetrabromobisphenol A. Environ Pollut. 2017;228:277–286. DOI:10.1016/j.envpol.2017.03.082.
  • Hiemenz PC, Hiemenz PC. Principles of colloid and surface chemistry. M. Dekker. New York (NY); 1986; Vol. 188.
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319. DOI:10.1021/ja01269a023.
  • Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373–380. DOI:10.1021/ja01145a126.
  • Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem. 1985;57:603, DOI:10.1351/pac198557040603.
  • Inglezakis VJ, Poulopoulos SG, Kazemian H. Insights into the s-shaped sorption isotherms and their dimensionless forms. Microporous Mesoporous Mater. 2018;272:166–176. DOI:10.1016/j.micromeso.2018.06.026.
  • Zhao X, Hu X, Hu G, et al. Enhancement of CO2 adsorption and amine efficiency of titania modified by moderate loading of diethylenetriamine. J Mater Chem A. 2013;1:6208–6215. DOI:10.1039/C3TA10651A.
  • Vilarrasa-García E, Cecilia JA, Azevedo DCS, et al. Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture. Microporous Mesoporous Mater. 2017;249:25–33. DOI:10.1016/j.micromeso.2017.04.049.
  • Long H, Wu P, Yang L, et al. Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. J Colloid Interface Sci. 2014;428:295–301. DOI:10.1016/j.jcis.2014.05.001.
  • Ndlovu B, Becker M, Forbes E, et al. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner Eng. 2011;24:1314–1322. DOI:10.1016/j.mineng.2011.05.008.
  • Mbey JA, Thomas F, Razafitianamaharavo A, et al. A comparative study of some kaolinites surface properties. Appl Clay Sci. 2019;172:135–145. DOI:10.1016/j.clay.2019.03.005.
  • Msadok I, Hamdi N, Gammoudi S, et al. Effect of cationic surfactant HDPY+ on the acidity and hydrophilicity of Tunisian clay. Mater Chem Phys. 2019;225:279–283. DOI:10.1016/j.matchemphys.2018.12.098.
  • Avena MJ, De Pauli CP. Proton adsorption and electrokinetics of an Argentinean montmorillonite. J Colloid Interface Sci. 1998;202:195–204. DOI:10.1006/jcis.1998.5402.
  • Tombácz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci. 2006;34:105–124. DOI:10.1016/j.clay.2006.05.009.
  • Xu H, Hu X, Chen Y, et al. Cd(II) and Pb(II) absorbed on humic acid-iron-pillared bentonite: kinetics,: thermodynamics and mechanism of adsorption. Colloids Surf, A. 2021;612:126005. DOI:10.1016/j.colsurfa.2020.126005.
  • Zhang B-L, Qiu W, Wang P-P, et al. Mechanism study about the adsorption of Pb(II) and Cd(II) with iron-trimesic metal-organic frameworks. Chem Eng J. 2020;385:123507. DOI:10.1016/j.cej.2019.123507.
  • Malakootian M, Khatami M, Mahdizadeh H, et al. A study on the photocatalytic degradation of p-nitroaniline on glass plates by thermo-immobilized ZnO nanoparticle. Inorg Nano-Met Chem. 2020;50:124–135. DOI:10.1080/24701556.2019.1662807.
  • Zhao M, Tang Z, Liu P. Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. J Hazard Mater. 2008;158:43–51. DOI:10.1016/j.jhazmat.2008.01.031.
  • Wang Z, Wang Y, Cao S, et al. Fabrication of core@shell structural Fe-Fe2O3@phcp nanochains with high saturation magnetization and abundant amino groups for hexavalent chromium adsorption and reduction. J Hazard Mater. 2020;384:121483. DOI:10.1016/j.jhazmat.2019.121483.
  • Zhao S, Meng Z, Fan X, et al. Removal of heavy metals from soil by vermiculite supported layered double hydroxides with three-dimensional hierarchical structure. Chem Eng J. 2020;390:124554. DOI:10.1016/j.cej.2020.124554.
  • Pouya ES, Abolghasemi H, Esmaieli M, et al. Batch adsorptive removal of benzoic acid from aqueous solution onto modified natural vermiculite: kinetic,: isotherm and thermodynamic studies. J Ind Eng Chem. 2015;31:199–215. DOI:10.1016/j.jiec.2015.06.024.
  • Liu J, Wu P, Li S, et al. Synergistic deep removal of As(III) and Cd(II) by a calcined multifunctional mgznfe-CO3 layered double hydroxide: photooxidation,: precipitation and adsorption. Chemosphere. 2019;225:115–125. DOI:10.1016/j.chemosphere.2019.03.009.
  • Abdus-Salam N, Adekola FJ. The influence of Ph and adsorbent concentration on adsorption of lead and zinc on a natural goethite. Afr J Sci Technol. 2005;6:55–66.
  • Azizian S. Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci. 2004;276:47–52. DOI:10.1016/j.jcis.2004.03.048.
  • Hua J. Synthesis and characterization of bentonite based inorgano–organo-composites and their performances for removing arsenic from water. Appl Clay Sci. 2015;114:239–246. DOI:10.1016/j.clay.2015.06.005.
  • Cegłowski M, Gierczyk B, Frankowski M, et al. A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. React Funct Polym. 2018;131:64–74. DOI:10.1016/j.reactfunctpolym.2018.07.006.
  • Chen H, Li W, Wang J, et al. Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: selective adsorption and influence of dissolved organic matter. Bioresour Technol. 2019;292:121948. DOI:10.1016/j.biortech.2019.121948.
  • Pehlivan E, Yanık BH, Ahmetli G, et al. Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour Technol. 2008;99:3520–3527. DOI:10.1016/j.biortech.2007.07.052.
  • Qin L, Yan L, Chen J, et al. Enhanced removal of Pb2+, Cu2+, and Cd2+ by amino-functionalized magnetite/kaolin clay. Ind Eng Chem Res. 2016;55:7344–7354. DOI:10.1021/acs.iecr.6b00657.
  • Kostenko LS, Tomashchuk II, Kovalchuk TV, et al. Bentonites with grafted aminogroups: synthesis,: protolytic properties and assessing Cu(II), Cd(II) and Pb(II) adsorption capacity. Appl Clay Sci. 2019;172:49–56. DOI:10.1016/j.clay.2019.02.009.
  • Hang Y, Si Y, Zhou Q, et al. Morphology-controlled synthesis of calcium titanate particles and adsorption kinetics,: isotherms, and thermodynamics of Cd(II), Pb(II), and Cu(II) cations. J Hazard Mater. 2019;380:120789. DOI:10.1016/j.jhazmat.2019.120789.
  • Zhang Y, Zhang L, Gao R, et al. CaCO3-coated PVA/BC-based composite for the simultaneous adsorption of Cu(ii), Cd(II), Pb(II) in aqueous solution. Carbohydr Polym. 2021;267:118227. DOI:10.1016/j.carbpol.2021.118227.
  • Li Z, Wang L, Meng J, et al. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J Hazard Mater. 2018;344:1–11. DOI:10.1016/j.jhazmat.2017.09.036.
  • Khan MA, Alqadami AA, Otero M, et al. Heteroatom-doped magnetic hydrochar to remove post-transition and transition metals from water: synthesis,: characterization, and adsorption studies. Chemosphere. 2019;218:1089–1099. DOI:10.1016/j.chemosphere.2018.11.210.
  • Ahmad A, Khatoon A, Mohd-Setapar S-H, et al. Chemically oxidized pineapple fruit peel for the biosorption of heavy metals from aqueous solutions. Desalin Water Treat. 2016;57:6432–6442. DOI:10.1080/19443994.2015.1005150.
  • Abdulrahman Oyekanmi A, Abd Latiff AA, Daud Z, et al. Adsorption of cadmium and lead from palm oil mill effluent using bone-composite: optimisation and isotherm studies. Int J Environ Anal Chem. 2019;99:707–725. DOI:10.1080/03067319.2019.1607318.
  • Ibrahim MNM, Ngah WSW, Norliyana MS, et al. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. J Hazard Mater. 2010;182:377–385. DOI:10.1016/j.jhazmat.2010.06.044.
  • Rafatullah M, Sulaiman O, Hashim R, et al. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J Hazard Mater. 2009;170:969–977. DOI:10.1016/j.jhazmat.2009.05.066.
  • Rafatullah M, Sulaiman O, Hashim R, et al. Removal of cadmium (II) from aqueous solutions by adsorption using meranti wood. Wood Sci Technol. 2012;46:221–241. DOI:10.1007/s00226-010-0374-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.