245
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pd/MIL-100(Fe) as hydrogen activator for FeIII/FeII cycle: Fenton removal of sulfamethazine

, , , , , ORCID Icon, , & show all
Pages 3504-3517 | Received 07 Dec 2021, Accepted 27 Mar 2022, Published online: 25 Apr 2022

References

  • Xiyan J, Yunchao T, Jing Y, et al. The effect of carbon-based copper nanocomposites on microcystis aeruginosa and the movability of antibiotic resistance genes in urban water. Chemosphere. 2021;286:131744. doi:10.1016/j.chemosphere.2021.131744.
  • Emilia SA, Valentina T, Roberta B, et al. Occurrence of antibiotic residues in Apulian honey: potential risk of environmental pollution by antibiotics. Ital J Food Saf. 2020;9:8678. doi:10.4081/ijfs.2020.8678.
  • Conde-Cid M, Fernández-Calviño D, Nóvoa-Muñoz JC, et al. Degradation of sulfadiazine, sulfachloropyridazine and sulfamethazine in aqueous media. J Environ Manage. 2018;228:239–248. doi:10.1016/j.jenvman.2018.09.025.
  • Wang J, Wang S. Microbial degradation of sulfamethoxazole in the environment. Appl Microbiol Biotechnol. 2018;102:3573–3582. doi:10.1007/s00253-018-8845-4.
  • Qin F, Peng Y, Song G, et al. Degradation of sulfamethazine by biochar-supported bimetallic oxide/persulfate system in natural water: performance and reaction mechanism. J Hazard Mater. 2020;398:122816. doi:10.1016/j.jhazmat.2020.122816.
  • Zhou C, Zeng Z, Zeng G, et al. Visible-light-driven photocatalytic degradation of sulfamethazine by surface engineering of carbon nitride: properties, degradation pathway and mechanisms. J Hazard Mater. 2019;380:120815. doi:10.1016/j.jhazmat.2019.120815.
  • Li R, Dong H, Tian R, et al. Activation of sulfite by different Fe0-based nanomaterials for oxidative removal of sulfamethazine in aqueous solution. Sep Purif Technol. 2020;250:117230. doi:10.1016/j.seppur.2020.117230.
  • Wang J, Zhou X, Waigi MG, et al. Simultaneous removal of estrogens and antibiotics from livestock manure using Fenton oxidation technique. Catalysts. 2019;9:644. doi:10.3390/catal9080644.
  • Rodríguez-Blanco LAJ, Ocampo-Pérez R, Gómez-Durán CFA, et al. Removal of sulfamethoxazole, sulfadiazine, and sulfamethazine by UV radiation and HO• and SO4•− radicals using a response surface model and DFT calculations. Environ Sci Pollut R. 2020;27:41609–41622. doi:10.1007/s11356-020-10071-0.
  • Tian Y, Zhou M, Pan Y, et al. MoS2 as highly efficient co-catalyst enhancing the performance of Fe0 based electro-Fenton process in degradation of sulfamethazine: approach and mechanism. Chem Eng J. 2021;403:126361. doi:10.1016/j.cej.2020.126361.
  • Yu Z, He P, Shao L, et al. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: a preliminary insight into the role of landfill age. Water Res. 2016;106:583–592. doi:10.4081/ijfs.2020.8678.
  • Wang J, Zhuan R, Chu L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview. Sci Total Environ. 2019;646:1385–1397. doi:10.1016/j.scitotenv.2018.07.415.
  • Wang J, Chu L, Wojnárovits L, et al. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci Total Environ. 2020;744. doi:10.1016/j.scitotenv.2020.140997.
  • Liu Y, Zhao Y, Wang J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects. J Hazard Mater. 2021;404:124191. doi:10.1016/j.jhazmat.2020.124191.
  • Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: preparation, characterization and modification. Chemosphere. 2021;276:130177. doi:10.1016/j.chemosphere.2021.130177.
  • Georgi A, Velasco Polo M, Crincoli K, et al. Accelerated catalytic Fenton reaction with traces of iron: an Fe-Pd-multicatalysis approach. Environ Sci Technol. 2016;50:5882–5891. doi:10.1021/acs.est.6b01049.
  • Javier T, Daphne H, Antonio G, et al. Treatment of mature landfill leachate by electrocoagulation followed by Fenton or UVA-LED photo-Fenton processes. J Taiwan Inst Chem E. 2021;119:33–44. doi:10.1016/j.jtice.2021.02.018.
  • Chongqing W, Ruirui S, Rong H, et al. A novel strategy for enhancing heterogeneous Fenton degradation of dye wastewater using natural pyrite: kinetics and mechanism. Chemosphere. 2021;272:129883. doi:10.1016/j.chemosphere.2021.129883.
  • Ayşe K, Ayşem G, Feryal A. Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode. J Environ Chem Eng. 2021;9:104782. doi:10.1016/j.jece.2020.104782.
  • Mokhbi Y, Korichi M, Akchiche Z. Combined photocatalytic and Fenton oxidation for oily wastewater treatment. Appl Water Sci. 2019;9:35. doi:10.1007/s13201-019-0916-x.
  • Ghernaout D, Elboughdiri N, Ghareba S. Fenton technology for wastewater treatment: dares and trends. Open Access Libr J. 2020;7:1–26. doi:10.4236/oalib.1106045.
  • Yildiz S, Cömert A. Fenton process effect on sludge disintegration. Int J Environ Heal R. 2020;30:89–104. doi:10.1080/09603123.2019.1576162.
  • Yan Q, Zhang J, Xing M. Cocatalytic Fenton reaction for pollutant control. Cell Rep Phys Sci. 2020;1:100149. doi:10.1016/j.xcrp.2020.100149.
  • Safa S, Mehrasbi MR. Investigating the photo-Fenton process for treating soil washing wastewater. J Environ Health Sci. 2019;17:779–787. doi:10.1007/s40201-019-00394-7.
  • Zhu Y, Zeng C, Zhu R, et al. TiO2/schwertmannite nanocomposites as superior co-catalysts in heterogeneous photo-Fenton process. J Environ Sci. 2019;80:208–217. doi:10.1016/j.jes.2018.12.014.
  • Lee S, Park J-W. Hematite/graphitic carbon nitride nanofilm for Fenton and photocatalytic oxidation of methylene blue. Sustainability. 2020;12:2866. doi:10.3390/su12072866.
  • Liu KG, Rouhani F, Gao XM, et al. Bilateral photocatalytic mechanism of dye degradation by a designed ferrocene-functionalized cluster under natural sunlight. Catal Sci Technol. 2020;10:757–767. doi:10.1039/c9cy02003a.
  • Camargo-Perea AL, Rubio-Clemente A, Peñuela GA. Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water. Water. 2020;12:1068. doi:10.3390/w12041068.
  • Wang C, Shih Y. Degradation and detoxification of diazinon by sono-Fenton and sono-Fenton-like processes. Sep Purif Technol. 2015;140:6–12. doi:10.1016/j.seppur.2014.11.005.
  • Ye Z, Brillas E, Centellas F, et al. Electro-Fenton process at mild pH using Fe(III)-EDDS as soluble catalyst and carbon felt as cathode. Appl Catal B-Environm. 2019;257:117907. doi:10.1016/j.apcatb.2019.117907.
  • Deng F, Garcia-Rodriguez O, Olvera-Vargas H, et al. Iron-foam as a heterogeneous catalyst in the presence of tripolyphosphate electrolyte for improving electro-Fenton oxidation capability. Electrochim Acta. 2018;272:176–183. doi:10.1016/j.electacta.2018.03.160.
  • Ganiyu SO, Huong Le TX, Bechelany M, et al. Electrochemical mineralization of sulfamethoxazole over wide pH range using FeIIFeIII LDH modified carbon felt cathode: degradation pathway, toxicity and reusability of the modified cathode. Chem Eng J. 2018;350:844–855. doi:10.1016/j.cej.2018.04.141.
  • Zhang C, Zhou M, Ren G, et al. Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res. 2015;70:414–424. doi:10.1016/j.watres.2014.12.022.
  • Sidney Santana C, Nicodemos Ramos MD, Vieira Velloso CC, et al. Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. Int J Env Res Pub He. 2019;16:1602. doi:10.3390/ijerph16091602.
  • Zhou P, Zhang J, Xiong Z, et al. C60 Fullerol promoted Fe(III)/H2O2 Fenton oxidation: role of photosensitive Fe(III)-Fullerol complex. Appl Catal B-Environm. 2020;265:118264. doi:10.1016/j.apcatb.2019.118264.
  • He D-Q, Zhang Y-J, Pei D-N, et al. Degradation of benzoic acid in an advanced oxidation process: the effects of reducing agents. J Hazard Mater. 2020;382:121090. doi:10.1016/j.jhazmat.2019.121090.
  • Subramanian G, Madras G. Remarkable enhancement of Fenton degradation at a wide pH range promoted by thioglycolic acid. Chem Commun. 2017;53:1136–1139. doi:10.1039/c6cc09962a.
  • Lee TB, Kim D, Jung DH, et al. Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catal Today. 2007;120:330–335. doi:10.1016/j.cattod.2006.09.030.
  • Rowsell JLC, Yaghi OM. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc. 2006;128:1304–1315. doi:10.1021/ja056639q.
  • Li Y, Yang RT. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J Am Chem Soc. 2006;128:726–727. doi:10.1021/ja056831s.
  • Liu X, Fan J-H, Liu Z-X, et al. Elimination of 4-chlorophenol in aqueous solution by the novel Pd/MIL-101(Cr)-hydrogen-accelerated catalytic Fenton system. Appl Organomet Chem. 2019;33:e5194. doi:10.1002/aoc.5194.
  • Wu J-H, Li Y, Liu X, et al. Destruction of 4-chlorophenol by the hydrogenaccelerated catalytic Fenton system enhanced by Pd/NH2-MIL-101(Cr). Environ Technol. 2020:1–12. doi:10.1080/09593330.2020.1841831.
  • Tang J, Wang J. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environ Sci Technol. 2018;52:5367–5377. doi:10.1021/acs.est.8b00092.
  • Hamon L, Serre C, Devic T, et al. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. J Am Chem Soc. 2009;131:8775. doi:10.1021/ja901587t.
  • Michel L, Suzy S, Christian S, et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem Int Ed Engl. 2006;45:8227–8231. doi:10.1002/anie.200600105.
  • Du Z, Li K, Zhou S, et al. Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides. Chem Eng J. 2020;380:122427. doi:10.1016/j.cej.2019.122427.
  • Li Y, Yang Y, Lei J, et al. The degradation pathways of carbamazepine in advanced oxidation process: a mini review coupled with DFT calculation. Sci Total Environ. 2021;779:146498. doi:10.1016/j.scitotenv.2021.146498.
  • Liu X, Ji H, Li S, et al. Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light. Chemosphere. 2019;233:198–206. doi:10.1016/j.chemosphere.2019.05.229.
  • Parr RG, Yang W. Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc. 1984;106:4049–4050. doi:10.1021/ja00326a036.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Wallingford (CT): Gaussian; 2009.
  • Rostamnia S, Alamgholiloo H. Synthesis and catalytic application of mixed valence iron (FeII/FeIII)-based OMS-MIL-100(Fe) as an efficient green catalyst for the aza-michael reaction. Catal Lett. 2018;148:2918–2928. doi:10.1007/s10562-018-2490-5.
  • Han M, Gu Z, Chen C, et al. Efficient confinement of ionic liquids in MIL-100(Fe) frameworks by the “impregnation-reaction-encapsulation” strategy for biodiesel production. RSC Adv. 2016;6:37110–37117. doi:10.1039/C6RA00579A.
  • Abednatanzi S, Abbasi A, Masteri-Farahani M. Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): a recyclable catalyst for selective oxidation of benzyl alcohol. Catal Commun. 2017;96:6–10. doi:10.1016/j.catcom.2017.03.011.
  • Jang H-Y, Kang J-K, Lee S-C, et al. Analysis of diclofenac removal by metal-organic framework MIL-100(Fe) using multi-parameter experiments and artificial neural network modeling. J Taiwan Inst Chem E. 2021;121:257–267. doi:10.1016/j.jtice.2021.04.021.
  • Gnanasekaran G, Sudhakaran M SP, Kulmatova D, et al. Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. Chemosphere. 2021;284:131244. doi:10.1016/j.chemosphere.2021.131244.
  • Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci. 2008;254:2441–2449. doi:10.1016/j.apsusc.2007.09.063.
  • Kong Y, Cheng X, An H, et al. Preparation and characterization of H4SiW12O40@MIL-100(Fe) and its catalytic performance for synthesis of 4,4′-MDA. Chin J Chem Eng. 2018;26:330–336. doi:10.1016/j.cjche.2017.03.036.
  • Cao M, Yang F, Zhang Q, et al. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production. J Mater Sci Technol. 2021;76:189–199. doi:10.1016/j.jmst.2020.11.028.
  • Adhikari AK, Lin K-S, Chang C-S. Improved hydrogen storage capacity by hydrogen spillover and fine structural characterization of MIL-100 metal organic frameworks. Res Chem Intermed. 2014;41:7655–7667. doi:10.1007/s11164-014-1850-z.
  • Luo S, Wang J. MOF/graphene oxide composite as an efficient adsorbent for the removal of organic dyes from aqueous solution. Environ Sci Pollut R. 2017;25:5521–5528. doi:10.1007/s11356-017-0932-z.
  • Hei S, Jin Y, Zhang F. Fabrication of γ-Fe2O3 nanoparticles by solid-state thermolysis of a metal-organic framework, MIL-100(Fe), for heavy metal ions removal. J Chem. 2014;2014:1–6. doi:10.1155/2014/546956.
  • Liu X, Gao S-Q, Fan J-H, et al. The construction of accelerated catalytic Fenton reaction based on Pd/MIL-101(Cr) and H2. New J Chem. 2019;43:8179–8188. doi:10.1039/C9NJ00204A.
  • Yang J-Y, Niu G-Y, Li M-K, et al. Covalent organic framework material as efficient adsorbent and H2-Accelerated catalytic Fenton catalyst for enhanced removal of sulfamethazine. J Water Process Eng. 2021;42:102127. doi:10.1016/j.jwpe.2021.102127.
  • Qin Y, Li G, Gao Y, et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review. Water Res. 2018;137:130–143. doi:10.1016/j.watres.2018.03.012.
  • Di G, Zhu Z, Zhang H, et al. Simultaneous sulfamethazine oxidation and bromate reduction by Pd-mediated Z-scheme Bi2MoO6/g-C3N4 photocatalysts: synergetic mechanism and degradative pathway. Chem Eng J. 2020;401:126061. doi:10.1016/j.cej.2020.126061.
  • Yuan S, Fan Y, Zhang Y, et al. Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-Fenton degradation of rhodamine B. Environ Sci Technol. 2011;45:8514–8520. https://pubs.acs.org/doi/10.1021/es2022939.
  • Luo M, Yuan S, Tong M, et al. An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants. Water Res. 2014;48:190–199. doi:10.1016/j.watres.2013.09.029.
  • Mei L, Wu Y, Zhou X, et al. Adsorption performance of MIL-100(Fe) for separation of olefin–paraffin mixtures. J Taiwan Inst Chem E. 2017;70:74–78. doi:10.1016/j.jtice.2016.10.047.
  • Aslam S, Zeng J, Subhan F, et al. In situ one-step synthesis of Fe3O4@MIL-100(Fe) core-shells for adsorption of methylene blue from water. J Colloid Interface Sci. 2017;505:186–195. doi:10.1016/j.jcis.2017.05.090.
  • Jia Y, Jin Q, Li Y, et al. Investigation of the adsorption behaviour of different types of dyes on MIL-100(Fe) and their removal from natural water. Anal Methods. 2015;7:1463–1470. doi:10.1039/C4AY02726D.
  • Cai J, Wang X, Zhou Y, et al. Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal–organic framework MIL-100(Fe). Phys Chem Chem Phys. 2016;18:10864–10867. doi:10.1039/C6CP00249H.
  • Hindocha S, Poulston S. Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters. Faraday Discuss. 2017;201:113–125. doi:10.1039/C7FD00090A.
  • Zhuang S, Wang J. Magnetic COFs as catalyst for Fenton-like degradation of sulfamethazine. Chemosphere. 2021;264:128561. doi:10.1016/j.chemosphere.2020.128561.
  • Panjwani MK, Wang Q, Ma Y, et al. High degradation efficiency of sulfamethazine with the dual-reaction-center Fe–Mn–SiO2 Fenton-like nanocatalyst in a wide pH range. Environ Sci-Nano. 2021;8:2204–2213. doi:10.1039/D1EN00253H.
  • Pérez-Moya M, Graells M, Castells G, et al. Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Res. 2010;44:2533–2540. doi:10.1016/j.watres.2010.01.032.
  • Yan X, Chen H, Lin T, et al. UV/chlorination of sulfamethazine (SMZ) and other prescription drugs: kinetics, transformation products and insights into the combined toxicological assessment. Environ Technol. 2020: 1–13. doi:10.1080/09593330.2020.1791969.
  • Hove M, van Hille RP, Lewis AE. Mechanisms of formation of iron precipitates from ferrous solutions at high and low pH. Chem Eng Sci. 2008;63:1626–1635. doi:10.1016/j.ces.2007.11.016.
  • Sun Y, Yang Z, Tian P, et al. Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts. Appl Catal B-Environm. 2019;244:1–10. doi:10.1016/j.apcatb.2018.11.009.
  • Laib S, Yazid H R, Guendouz N, et al. Heterogeneous Fenton catalyst derived from hydroxide sludge as an efficient and reusable catalyst for anthraquinone dye degradation. Sep Sci Technol. 2018;54:1338–1352. doi:10.1080/01496395.2018.1531892.
  • Du X, Fu W, Su P, et al. Internal-micro-electrolysis-enhanced heterogeneous electro-Fenton process catalyzed by Fe/Fe3C@PC core–shell hybrid for sulfamethazine degradation. Chem Eng J. 2020;398:125681. doi:10.1016/j.cej.2020.125681.
  • Zheng X, Chen S, Gao L, et al. Experimental and theoretical study of kinetic and mechanism of hydroxyl radical-mediated degradation of sulfamethazine. Environ Sci Pollut R. 2020;27:40504–40511. doi:10.1007/s11356-020-10072-z.
  • Yin R, Guo W, Wang H, et al. Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: performances and mechanisms. Chem Eng J. 2018;335:145–153. doi:10.1016/j.cej.2017.10.063.
  • Zhang C, Tian S, Qin F, et al. Catalyst-free activation of permanganate under visible light irradiation for sulfamethazine degradation: experiments and theoretical calculation. Water Res. 2021;194:116915. doi:10.1016/j.watres.2021.116915.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.