166
Views
0
CrossRef citations to date
0
Altmetric
Articles

Removal of Cadmium(II) by hydrated manganese dioxide: behaviour and mechanism at different pH

, &
Pages 3544-3562 | Received 23 Dec 2021, Accepted 27 Mar 2022, Published online: 28 Apr 2022

References

  • Lan J, Dong Y, Sun Y, et al. A novel method for solidification/stabilization of Cd(II),: Hg(II), Cu(II), and Zn(II) by activated electrolytic manganese slag. J Hazard Mater. 2021;409(5):124933), https://doi.org/10.1016/j.jhazmat.2020.124933.
  • Liu Y, Xiao T, Ning Z, et al. High cadmium concentration in soil in the Three Gorges region: geogenic source and potential bioavailability. Appl Geochem. 2013;37:149–156. https://doi.org/10.1016/j.apgeochem.2013.07.022.
  • Zhang X, Chen C, Lin P, et al. Emergency drinking water treatment during source water pollution accidents in China: origin analysis, framework and technologies. Environ Sci Technol. 2011;45(1):161–167. https://doi.org/10.1021/es101987e.
  • Elouear Z, Bouzid J, Boujelben N. Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: study in single and binary systems. Environ Technol. 2009;30(6):561–570. https://doi.org/10.1080/09593330902824940.
  • Veneu DM, Schneider CL, de Mello Monte MB, et al. Cadmium removal by bioclastic granules (Lithothamnium calcareum): batch and fixed-bed column systems sorption studies. Environ Technol. 2018;39(13):1670–1681.
  • Cheng Q, Huang Q, Khan S, et al. Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecol Eng. 2016;87:240–245. https://doi.org/10.1016/j.ecoleng.2015.11.045.
  • Vuković GD, Marinković AD, Čolić M, et al. Removal of Cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem Eng J. 2010;157(1):238–248. https://doi.org/10.1016/j.cej.2009.11.026.
  • Mahmud HNME, Huq AKO, Yahya RB. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 2016;6(18):14778–14791. https://doi.org/10.1039/C5RA24358K.
  • Mubarak NM, Sahu JN, Abdullah EC, et al. Microwave assisted multiwall carbon nanotubes enhancing Cd(II) adsorption capacity in aqueous media. J Ind Eng Chem. 2015;24:24–33. https://doi.org/10.1016/j.jiec.2014.09.005.
  • Soylak M, Erdogan ND. Copper(II)–rubeanic acid coprecipitation system for separation–preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations. J Hazard Mater. 2006;137(2):1035–1041. https://doi.org/10.1016/j.jhazmat.2006.03.031.
  • El Samrani AG, Lartiges BS, Villiéras F. Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res. 2008;42(4):951–960. https://doi.org/10.1016/j.watres.2007.09.009.
  • He M, Wang L, Lv Y, et al. Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal. Chem Eng J. 2020;389:124452), https://doi.org/10.1016/j.cej.2020.124452.
  • Bakalár T, Milan B, Lucia G. Heavy metal removal using reverse osmosis. Acta Montan Slovaca. 2009;14(3):250–253.
  • Alyüz B, Veli S. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater. 2009;167(1):482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006.
  • Wang FY, Wang H, Ma JW. Adsorption of cadmium(II) ions from aqueous solution by a new low-cost adsorbent—bamboo charcoal. J Hazard Mater. 2010;177(1):300–306. https://doi.org/10.1016/j.jhazmat.2009.12.032.
  • Ali I, Gupta VK. Advances in water treatment by adsorption technology. Nat Protoc. 2006;1(6):2661–2667. https://doi.org/10.1038/nprot.2006.370.
  • Jusoh A, Su Shiung L, Ali NA, et al. A simulation study of the removal efficiency of granular activated carbon on Cadmium and lead. Desalination. 2007;206(1):9–16. https://doi.org/10.1016/j.desal.2006.04.048.
  • Li B, Yang L, Wang C, et al. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere. 2017;175:332–340. https://doi.org/10.1016/j.chemosphere.2017.02.061.
  • Han H, Rafiq MK, Zhou T, et al. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater. 2019;369:780–796. https://doi.org/10.1016/j.jhazmat.2019.02.003.
  • Parlayıcı S, Pehlivan E. Removal of metals by Fe3O4 loaded activated carbon prepared from plum stone (Prunus nigra): kinetics and modelling study. Powder Technol. 2017;317:23–30. https://doi.org/10.1016/j.powtec.2017.04.021.
  • Qin L, Yan L, Chen J, et al. Enhanced removal of Pb2+, Cu2+, and Cd2+ by amino-functionalized magnetite/kaolin clay. Ind Eng Chem Res. 2016;55(27):7344–7354. https://doi.org/10.1021/acs.iecr.6b00657.
  • Zhang H, Xu F, Xue J, et al. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: behavior and mechanism. Sci Rep-Uk. 2020;10(1):6067), https://doi.org/10.1038/s41598-020-63000-z.
  • Li H, Gui L, Gao Z, et al. Facile synthesis of 2D alpha-MnO2 nanosheets for the removal of heavy metal ions. Nanotechnology. 2021;32(21):215705), https://doi.org/10.1088/1361-6528/abe001.
  • Han R, Zou W, Li H, et al. Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. J Hazard Mater. 2006;137(2):934–942. https://doi.org/10.1016/j.jhazmat.2006.03.016.
  • Qin Q, Wang Q, Fu D, et al. An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chem Eng J. 2011;172(1):68–74. https://doi.org/10.1016/j.cej.2011.05.066.
  • Qi X, Xie F. Promotion effects of potassium permanganate on removal of Pb (II), Ni (II) and Cd (II) from hydrous manganese dioxide. Chem Eng J. 2018;351:22–30. https://doi.org/10.1016/j.cej.2018.06.042.
  • Liu C, Ding R, Xie F. Facile synthesis of manganese dioxide nanoparticles for efficient removal of aqueous As (III). J Chem Eng Data. 2020;65(8):3988–3997. https://doi.org/10.1021/acs.jced.0c00311.
  • Li H, Li X, Xiao T, et al. Efficient removal of thallium(I) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder. Chem Eng J. 2018;353:867–877. https://doi.org/10.1016/j.cej.2018.07.169.
  • Chen M, Wu P, Yu L, et al. FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident. J Environ Manage. 2017;192:31–38. https://doi.org/10.1016/j.jenvman.2017.01.038.
  • Tan X, Wan Y, Huang Y, et al. Three-dimensional MnO2 porous hollow microspheres for enhanced activity as ozonation catalysts in degradation of bisphenol A. J Hazard Mater. 2017;321:162–172. https://doi.org/10.1016/j.jhazmat.2016.09.013.
  • Zhang L, Ma J, Yu M. The microtopography of manganese dioxide formed in situ and its adsorptive properties for organic micropollutants. Solid State Sci. 2008;10(2):148–153. https://doi.org/10.1016/j.solidstatesciences.2007.08.013.
  • Wu S, Xie F, Chen S, et al. The removal of Pb (II) and Cd (II) with hydrous manganese dioxide: mechanism on zeta potential and adsorption behavior. Environ Technol. 2020;41(24):3219–3232. https://doi.org/10.1080/09593330.2019.1604814.
  • Li Q, Yang F, Zhang J, et al. Magnetic Fe3O4/MnO2 core–shell nano-composite for removal of heavy metals from wastewater. SN Appl Sci. 2020;2(8):1375), https://doi.org/10.1007/s42452-020-3182-5.
  • Peng L, Zeng Q, Tie B, et al. Manganese dioxide nanosheet suspension: a novel absorbent for cadmium(II) contamination in waterbody. J Colloid Interf Sci. 2015;456:108–115. https://doi.org/10.1016/j.jcis.2015.06.017.
  • Wan S, Ma M, Lv L, et al. Selective capture of thallium(I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chem Eng J. 2014;239:200–206. https://doi.org/10.1016/j.cej.2013.11.010.
  • Cao J, Mao Q, Shi L, et al. Fabrication of γ-MnO2/α-MnO2 hollow core/shell structures and their application to water treatment. J Mater Chem. 2011;21(40):16210–16215. http://doi.org/10.1039/C1JM10862J.
  • Yang X, Makita Y, Liu Z, et al. Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chem Mater. 2004;16(26):5581–5588. https://doi.org/10.1021/cm049025d.
  • Bhattacharyya KG, Gupta SS. Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: influence of acid activation. J Colloid Interf Sci. 2007;310(2):411–424. https://doi.org/10.1016/j.jcis.2007.01.080.
  • Liu C, Jiang X, Wang X, et al. Magnetic polyphenol nanocomposite of Fe3O4/SiO2/PP for Cd(II) adsorption from aqueous solution. Environ Technol. 2020;43(6):1–14. https://doi.org/10.1080/09593330.2020.1811394.
  • Das N, Jana RK. Adsorption of some bivalent heavy metal ions from aqueous solutions by manganese nodule leached residues. J Colloid Interf Sci. 2006;293(2):253–262. https://doi.org/10.1016/j.jcis.2005.06.064.
  • Fenti A, Iovino P, Salvestrini S. Some remarks on “A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption” – Journal of Molecular Liquids 273 (2019) 425–434. J Mol Liq. 2019;276:529–530. https://doi.org/10.1016/j.molliq.2018.12.019.
  • Njimou JR, Măicăneanu A, Indolean C, et al. Removal of Cd (II) from synthetic wastewater by alginate–Ayous wood sawdust (Triplochiton scleroxylon) composite material. Environ Technol. 2016;37(11):1369–1381. https://doi.org/10.1080/09593330.2015.1116609.
  • Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div. 1963;89(2):31–59. https://doi.org/10.1061/JSEDAI.0000430.
  • Yantasee W, Warner CL, Sangvanich T, et al. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol. 2007;41(14):5114–5119. https://doi.org/10.1021/es0705238.
  • Zhu Z. Preparation and characterization of functionalized silica spheres for removal of Cu(II), Pb(II), Cr(VI) and Cd(II) from aqueous solutions. RSC Adv. 2015;5(36):28624–28632. https://doi.org/10.1039/C4RA14985H.
  • Abdelnaeim MY, El Sherif IY, Attia AA, et al. Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II). Int J Miner Process. 2016;157:80–88. https://doi.org/10.1016/j.minpro.2016.09.013.
  • Mohammadi M, Vadi M, Bagehri N, et al. Kinetics and thermodynamics adsorption of oxazepam drug on the multi-walled carbon nanotube. J Chin Chem Soc-Taip. 2021;68(5):799–805. https://doi.org/10.1002/jccs.202000407.
  • Chouyyok W, Shin Y, Davidson J, et al. Selective removal of copper(II) from natural waters by nanoporous sorbents functionalized with chelating diamines. Environ Sci Technol. 2010;44(15):6390–6395. https://doi.org/10.1021/es101165c.
  • Lai C, Chen C, Wei B, et al. Cadmium adsorption on goethite-coated sand in the presence of humic acid. Water Res. 2002;36(20):4943–4950. https://doi.org/10.1016/S0043-1354(02)00009-X.
  • Xiong L, Chen C, Chen Q, et al. Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. J Hazard Mater. 2011;189(3):741–748. https://doi.org/10.1016/j.jhazmat.2011.03.006.
  • Bochatay L, Persson P, Sjöberg S. Metal ion coordination at the water-manganite (γ-MnOOH) interface: I. an EXAFS study of cadmium(II). J Colloid Interf Sci. 2000;229(2):584–592. https://doi.org/10.1006/jcis.2000.7013.
  • Yang R, Wang Z, Dai L, et al. Synthesis and characterization of single-crystalline nanorods of α-MnO2 and γ-MnOOH. Mater Chem Phys. 2005;93(1):149–153. https://doi.org/10.1016/j.matchemphys.2005.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.