108
Views
2
CrossRef citations to date
0
Altmetric
Articles

Study on the cyclic adsorption performance of biomass composite membrane for Hg(II)

, , , , &
Pages 3777-3790 | Received 06 Mar 2022, Accepted 22 Apr 2022, Published online: 09 May 2022

References

  • Sobhanardakani S, Jafari A, Zandipak R, et al. Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Saf Environ. 2018;120:348–357. doi:10.1016/j.psep.2018.10.002.
  • Sobhanardakani S. Potential health risk assessment of heavy metals via consumption of caviar of Persian sturgeon. Mar Pollut Bull. 2017;123(1-2):34–38. doi:10.1016/j.marpolbul.2017.09.033.
  • Ahmad H, BinSharfan I, Khan R, et al. 3D nanoarchitecture of polyaniline-MoS2 hybrid material for Hg(II) adsorption properties. Polym. 2020;12:2731, doi:10.3390/polym12112731.
  • Fu F, Wang Q. Removal of heavy metal cations from wastewaters: a review. J Environ Manage. 2011;92:407–418. doi:10.1016/j.jenvman.2010.11.011.
  • Zeng Q, Hu L, Zhong H, et al. Efficient removal of Hg2+ from aqueous solution by a novel composite of nano humboldtine decorated almandine (NHDA): Ion exchange, reducing-oxidation and adsorption. J Hazard Mater. 2021;404:124035, doi:10.1016/j.jhazmat.2020.124035.
  • Veisi B, Lorestani B, Ardakani S, et al. Synthesis of magnetite@MIL-53(Fe)-NH-CS2 via postsynthetic modification for extraction/separation of ultra-trace Hg (II) from some real samples and its subsequent quantification by CVAAS. Appl Organomet Chem. 2021;35(10):e6351, doi:10.1002/aoc.6351.
  • Sobhanardakani S, Zandipak R. Synthesis and application of TiO2/SiO 2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technol Envir. 2017;19(7):1913–1925. doi:10.1007/s10098-017-1374-5.
  • Sobhanardakani S, Zandipak R, Taghavi L. Synthesis of 2,4- dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles for adsorption of Hg(II) ions from an aqueous solution. Envir Health Eng M. 2016;3(4):183–189. doi:10.15171/EHEM.2016.18.
  • Aguado J, Arsuaga J, Arencibia A, et al. Aqueous heavy metal removal by adsorption on amine-functionalized mesoporous silica. J Hazard Mater. 2009;1:213–221. doi:10.1016/j.jhazmat.2008.06.080.
  • Al-Qodah Z, Shawaqfeh AT, Lafi WK. Two-resistance mass transfer model for the adsorption of the pesticide deltamethrin using acid treated oil shale ash. Adsorption. 2007;13(1):73–82. doi:10.1007/s10450-007-9004-x.
  • Al-Qodah Z, Al-Shannag M, Amro A, et al. Impact of surface modification of green algal biomass by phosphorylation on the removal of copper(II) ions from water. Turk J Chem. 2017;41:190–208. doi:10.3906/kim-1605-38.
  • Mohammad H, Maryam A, Toraj M, et al. One-dimensional graphene for efficient aqueous heavy metal adsorption: rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere. 2020;253:126647–126657. doi:10.1016/j.chemosphere.2020.126647.
  • Wu H, Dang M. Adsorption of lead Ion by polyether sulfone membrane grafted with amino carboxylic acid functionalized oxide graphene. Water Treat Technol. 2021;47(01):87–90. doi:10.16796/j.cnki.1000-3770.2021.01.017.
  • Li Y, Gao Y, Zhang Q, et al. Flexible and free-standing pristine polypyrrole membranes with a nanotube structure for repeatable Cr(VI) ion removal. Sep Purif Technol. 2020;258:117981, doi:10.1016/j.seppur.2020.117981.
  • Wu C, Zhang L, Li L, et al. Study on high performance PES/PVA composite ultrafiltration membrane. Water Treat Technol. 2008;34:40–44. doi:10.16796/j.cnki.1000-3770.2016.02.012.
  • Xing L, Li M, Qi T, et al. Construction of confined bifunctional 2D material for efficient sulfur resource recovery and Hg2+ adsorption in desulfurization. Environ Sci Technol. 2022. doi:10.1021/ACS.EST.2C00377.
  • Lin H, Duan Y, Zhao B, et al. Efficient Hg(II) removal to ppb level from water in wider pH based on poly-cyanoguanidine/graphene oxide: preparation, behaviors, and mechanisms. Colloid Surface A. 2022;641; doi:10.1016/J.COLSURFA.2022.128467.
  • Zhao L, Zhang Y, Wang L, et al. Effective removal of Hg(II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: effect of different pyrolysis temperatures. Chemosphere. 2022;294:133820–133820. doi:10.1016/J.CHEMOSPHERE.2022.133820.
  • Thakur S, Sharma B, Thakur A, et al. Synthesis and characterisation of zinc oxide modified biorenewable polysaccharides based sustainable hydrogel nanocomposite for Hg2+ ion removal: towards a circular bioeconomy. Bioresource Technol. 2022;348:126708–126708. doi:10.1016/J.BIORTECH.2022.126708.
  • Sahu MK, Patel RK, Kurwadkar S. Mechanistic insight into the adsorption of mercury (II) on the surface of red mud supported nanoscale zero-valent iron composite. J Contam Hydrol. 2022;246:103959, doi:10.1016/J.JCONHYD.2022.103959(prepublish).
  • Bich N, Thuong T, Quynh P, et al. Enhanced selective adsorption of cation organic dyes on polyvinyl alcohol/agar/maltodextrin water-resistance biomembrane. Appl Polym Sci. 2019;30:48904–48914. doi:10.1002/app.48904.
  • Xin S, Yang H, Chen Y, et al. Chemical structure evolution of char during the pyrolysis of cellulose. J Anal Appl Pyrol. 2015;116:263–271. doi:10.1016/j.jaap.2015.09.002.
  • Wichaita W, Samart C, Yoosuk B, et al. Cellulose graft poly(acrylic acid) and polyacrylamide:grafting efficiency and heavy metal adsorption performance. Macromol Theory Simul. 2015;354(1):84–90. doi:10.1002/masy.201400119.
  • Calvin M, Ashutosh M, Peter NC, et al. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis. ACS Sustain Chem Eng. 2016;4(9):4662–4674. doi:10.1021/acssuschemeng.6b00812.
  • Sun R, Tomkinson J, Ma P, et al. Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohydr Polym. 2000;42(2):111–122. doi:10.1016/S0144-8617(99)00136-8.
  • Sobhanardakani S, Zandipak R, Javanshir-Khoei A, et al. Removal of Hg(II) and Cd(II) ions from aqueous solution using chitosan: kinetics and equilibrium studies. Iran J Health Sci. 2015;3(2):21–30. http://jhs.mazums.ac.ir.
  • Niklas W, Sophie S, Gunilla T, et al. Ulvan dialdehyde-gelatin hydrogels for removal of heavy metals and methylene blue from aqueous solution. Carbohyd Polym. 2020;249:116841–116854. doi:10.1016/j.carbpol.2020.116841.
  • Yue Y, Wang X, Han J, et al. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: mechanical properties and adsorption-desorption capacities. Carbohydr Polym. 2019;206:206289–206301. doi:10.1016/j.carbpol.2018.10.105.
  • Gapusan R, Balela M. Adsorption of anionic methyl orange dye and lead(II) heavy metal ion by polyaniline-kapok fiber nanocomposite. Mater Chem Phys. 2020;243:122682, doi:10.1016/j.matchemphys.2020.122682.
  • Trung N, Tri N, Phuong P, et al. Synthesis of highly active heterostructured Al2TiO5/TiO2 photocatalyst in a neutral medium. J Nano. 2020;13:1–12. doi:10.1155/2020/6684791.
  • Sun C, Berg J. A review of the different techniques for solid surface acid–base characterization. Adv Colloid Interf Sci. 2003;105:151–175. doi:10.1016/S0001-8686(03)00066-6.
  • Kononenko N, Nikonenko V, Grande C, et al. Porous structure of ion exchange membranes investigated by various techniques. Adv Colloid Interf Sci. 2017;246:196–216. doi:10.1016/j.cis.2017.05.007.
  • Milena N, Camila B, Kauê F, et al. Influence of swelling level on charge transmission of chitosan and reduced graphene oxide film electrodes. Mater Chem and Phys. 2020;255:123623, doi:10.1016/j.matchemphys.2020.123623.
  • Simonin J. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J. 2016;300:254–263. doi:10.1016/j.cej.2016.04.079.
  • Mohammad A, Zakaria A, Mansour N, et al. On the performance of Ballota undulata biomass for the removal of cadmium(II) ions from water. Desalin Water Treat. 2017;67:223–230. doi:10.5004/dwt.2017.20379.
  • Jamwal H, Ranote S, Kumar D, et al. Gelatin-based mesoporous hybrid materials for Hg2+ ions removal from aqueous solutions. Sep Purif Technol. 2020;239:116513–116521. doi:10.1016/j.seppur.2020.116513.
  • Li B, Pan Y, Zhang Q, et al. Porous cellulose beads reconstituted from ionic liquid for adsorption of heavy metal ions from aqueous solutions. Cellulose. 2019;26:9163–9178. doi:10.1007/s10570-019-02687-4.
  • Yang Z, Liu H, Li J, et al. High-Throughput metal trap: sulfhydryl-functionalized wood membrane stacks for rapid and highly efficient heavy metal ion removal. ACS Appl Mater Inter. 2020;13:15002–15011. doi:10.1021/acsami.9b19734.
  • Taleb K, Markovski J, Velickovic Z, et al. Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size. Arab J Chem. 2019;12:4675–4693. doi:10.1016/j.arabjc.2016.08.006.
  • Foo K, Hameed B. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156:2–10. doi:10.1016/j.cej.2009.09.013.
  • Kang Y, Tan G, Man Q, et al. A new low-density hydrogel-based matrix with hollow microsphere structure for weight reduction of microwave absorbing composites. Mater Chem Phys. 2021;266:124532, doi:10.1016/j.matchemphys.2021.124532.
  • Vivek B, Gaurav R, Sonal S, et al. Green and novel adsorbent from rice straw extracted cellulose for efficient adsorption of Hg(II) ions in an aqueous medium. Int J Biol Macromol. 2020;161:194–203. doi:10.1016/j.ijbiomac.2020.06.035.
  • Gu C, Jia H, Li H, et al. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ Sci Technol. 2010;44(11):4258–4263. doi:10.1021/es903801r.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.