301
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis of monometallic macrostructured catalysts for bromate reduction in a continuous catalytic system

, , , ORCID Icon & ORCID Icon
Pages 3834-3849 | Received 20 Dec 2021, Accepted 22 Apr 2022, Published online: 15 May 2022

References

  • Butler RAY, Godley A, Lytton L, et al. Bromate environmental contamination: review of impact and possible treatment. Crit Rev Environ Sci Technol. 2005;35:193–217. doi:10.1080/10643380590917888.
  • Kirisits MJ, Snoeyink VL, Kruithof JC. The reduction of bromate by granular activated carbon. Water Res. 2000;34:4250–4260. doi:10.1016/S0043-1354(00)00189-5.
  • WHO G. Guidelines for drinking-water quality, world heal. Organ. 2011;216:303–304.
  • U.S.E.P. Agency. National primary drinking water regulations: stage 2 disinfectants and disinfection byproducts rule: final rule. Fed Regist. 2006;71:388–493.
  • Marco Y, García-Bordejé E, Franch C, et al. Bromate catalytic reduction in continuous mode using metal catalysts supported on monoliths coated with carbon nanofibers Chem Eng J. 2013;230:605–611. doi:10.1016/j.cej.2013.06.040.
  • Thakur DB, Tiggelaar RM, Weber Y, et al. Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors. Part II: catalytic reduction of bromate contaminants in aqueous phase. Appl Catal B Environ. 2011;102:243–250.
  • Wu X, Yang Q, Xu D, et al. Simultaneous adsorption/reduction of bromate by nanoscale zerovalent iron supported on modified activated carbon. Ind Eng Chem Res. 2013;52:12574–12581.
  • Restivo J, Soares O, Orfao JJM, et al. Catalytic reduction of bromate over monometallic catalysts on different powder and structured supports. Chem Eng J. 2017;309:197–205. doi:10.1016/j.cej.2016.10.025.
  • Descorme C, Gallezot P, Geantet C, et al. Heterogeneous catalysis: a key tool toward sustainability. Chem Cat Chem. 2012;4:1897–1906. doi:10.1002/cctc.201200483.
  • Restivo J, Soares OSGP, Órfão JJM, et al. Metal assessment for the catalytic reduction of bromate in water under hydrogen. Chem Eng J. 2015;263:119–126. doi:10.1016/j.cej.2014.11.052.
  • Sun W, Li Q, Gao S, et al. Highly efficient catalytic reduction of bromate in water over a quasi-monodisperse, superparamagnetic Pd/Fe 3 O 4 catalyst. J Mater Chem A. 2013;1:9215–9224.
  • Soares OSGP, Ramalho PSF, Fernandes A, et al. Catalytic bromate reduction in water: influence of carbon support. J Environ Chem Eng. 2019;7:103015. doi:10.1016/j.jece.2019.103015.
  • Zhang P, Jiang F, Chen H. Enhanced catalytic hydrogenation of aqueous bromate over Pd/mesoporous carbon nitride. Chem Eng J. 2013;234:195–202.
  • Chen H, Xu Z, Wan H, et al. Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Appl Catal B Environ. 2010;96:307–313. doi:10.1016/j.apcatb.2010.02.021.
  • Soares OSGP, Freitas CMAS, Fonseca AM, et al. Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chem Eng J. 2016;291:199–205. doi:10.1016/j.cej.2016.01.093.
  • Freitas C, Soares O, Orfao JJM, et al. Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chem. 2015;17:4247–4254.
  • Zhang Z, Luo Y, Guo Y, et al. Pd and Pt nanoparticles supported on the mesoporous silica molecular sieve SBA-15 with enhanced activity and stability in catalytic bromate reduction. Chem Eng J. 2018;344:114–123.
  • Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon NY. 1998;36:159–175. doi:10.1109/ICL-GNSS.2013.6577279.
  • Soares OSGP. Development of carbon materials as metal catalyst supports and metal-free catalysts for catalytic reduction of ions and advanced oxidation processes. Bol Grup Español Del Carbono. 2016;40:20–23.
  • Soares OSGP, Orfao JJM, Pereira MFR. Pd− Cu and Pt− Cu catalysts supported on carbon nanotubes for nitrate reduction in water. Ind Eng Chem Res. 2010;49:7183–7192. doi:10.1021/ie1001907.
  • Rodríguez-Reinoso F, Sepúlveda-Escribano A. Carbon as catalyst support. Carbon Mater Catal. 2009: 131–155.
  • Restivo J, Soares OSGP, Órfão JJM, et al. Bimetallic activated carbon supported catalysts for the hydrogen reduction of bromate in water. Catal Today. 2015;249:213–219. doi:10.1016/j.cattod.2014.10.048.
  • Soares OSGP, Órfão JJM, Pereira MFR. Nitrate reduction in water catalysed by Pd – Cu on different supports. Desalination. 2011;279:367–374. doi:10.1016/j.desal.2011.06.037.
  • Huang W-J, Cheng Y-L. Effect of characteristics of activated carbon on removal of bromate. Sep Purif Technol. 2008;59:101–107. doi:10.1016/j.seppur.2007.05.034.
  • Yuranova T, Kiwi-Minsker L, Franch C, et al. Nanostructured catalysts for the continuous reduction of nitrates and bromates in water. Ind Eng Chem Res. 2013;52:13930–13937.
  • Yuranova T, Franch C, Palomares AE, et al. Structured fibrous carbon-based catalysts for continuous nitrate removal from natural water. Appl Catal B Environ. 2012: 221–228. doi:10.1016/j.apcatb.2012.04.007.
  • Restivo J, Órfão JJM, Armenise S, et al. Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. J Hazard Mater. 2012: 239–240. doi:10.1016/j.jhazmat.2012.08.073.
  • Nijhuis TA, Kreutzer MT, Romijn ACJ, et al. Monolithic catalysts as efficient three-phase reactors. Chem Eng Sci. 2001;56:823–829.
  • Hosseini S, Moghaddas H, Masoudi Soltani S, et al. Technological applications of honeycomb monoliths in environmental processes: a review. Process Saf Environ Prot. 2020;133:286–300. doi:10.1016/j.psep.2019.11.020.
  • Troncoso FD, Tonetto GM. Highly stable platinum monolith catalyst for the hydrogenation of vegetable oil. Chem Eng Process – Process Intensif. 2022;170:108669. doi:10.1016/j.cep.2021.108669.
  • Santos DFM, Soares OSGP, Figueiredo JL, et al. Optimization of the preparation conditions of cordierite honeycomb monoliths washcoated with cryptomelane-type manganese oxide for VOC oxidation. Environ Technol. 2021;42:2504–2515. doi:10.1080/09593330.2019.1705398.
  • Restivo J, Orge CA, Guedes Gorito Dos Santos AS, et al. Nanostructured layers of mechanically processed multiwalled carbon nanotubes for catalytic ozonation of organic pollutants. ACS Appl Nano Mater. 2020;3:5271–5284. doi:10.1021/acsanm.0c00662.
  • Restivo J, Orge CA, Guedes Gorito dos Santos AS, et al. Influence of preparation methods on the activity of macro-structured ball-milled MWCNT catalysts in the ozonation of organic pollutants. J Environ Chem Eng. 2020;104578; doi:10.1016/j.jece.2020.104578.
  • Wu D, Zhang Y, Li Y. Mechanical stability of monolithic catalysts: improving washcoat adhesion by FeCrAl alloy substrate treatment. J Ind Eng Chem. 2017;56:175–184. doi:10.1016/j.jiec.2017.07.010.
  • Wang B, Pang B. The influence of N,N-Dimethylformamide on dispersion of multi-walled carbon nanotubes. Russ J Phys Chem A. 2020;94:810–817. doi:10.1134/S0036024420040019.
  • Clark MD, Krishnamoorti R. Dispersion of functionalized multiwalled carbon nanotubes. J Phys Chem C. 2009;113:20861–20868. doi:10.1021/jp907221g.
  • Soares O, Órfão JJM, Ruiz-Martínez J, et al. Pd–Cu/AC and Pt–Cu/AC catalysts for nitrate reduction with hydrogen: influence of calcination and reduction temperatures. Chem Eng J. 2010;165:78–88. doi:10.1016/j.cej.2010.08.065.
  • Soares OSGP, Gonçalves AG, Delgado JJ, et al. Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts. Catal Today. 2015;249:199–203. doi:10.1016/j.cattod.2014.11.016.
  • Ma P-C, Siddiqui NA, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf. 2010;41:1345–1367. doi:10.1016/j.compositesa.2010.07.003.
  • Simescu-Lazar F, Chaieb T, Pallier S, et al. Direct coating of carbon-supported catalysts on monoliths and foams – singular behaviour of Pd/MWCNT. Appl Catal A Gen. 2015;508:45–51. doi:10.1016/j.apcata.2015.09.042.
  • Rojas JA, Ardila-Rodríguez LA, Diniz MF, et al. Optimization of Triton X-100 removal and ultrasound probe parameters in the preparation of multiwalled carbon nanotube buckypaper. Mater Des. 2019;166:107612. doi:10.1016/j.matdes.2019.107612.
  • Restivo J, Órfão JJM, Pereira MFR, et al. Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths. Chem Eng J. 2013;230:115–123. doi:10.1016/j.cej.2013.06.064.
  • Patel U, Dharaiya N, Bahadur P. Preservative solubilization induces microstructural change of Triton X-100 micelles. J Mol Liq. 2016;216:156–163. doi:10.1016/j.molliq.2015.12.079.
  • Gurrath M, Kuretzky T, Boehm HP, et al. Palladium catalysts on activated carbon supports: influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon NY. 2000;38:1241–1255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.