422
Views
4
CrossRef citations to date
0
Altmetric
Articles

Combined experimental and molecular dynamics removal processes of contaminant phenol from simulated wastewater by polyethylene terephthalate microplastics

ORCID Icon & ORCID Icon
Pages 1183-1202 | Received 13 May 2022, Accepted 18 Oct 2022, Published online: 26 Oct 2022

References

  • Koelmans AA, Mohamed NH, Hermsen E, et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res. 2019;155:410–422.
  • Wang Q, Enyoh CE, Chowdhury T, et al. Analytical techniques, occurrence and health effects of micro and nano plastics deposited in street dust. Intl J Environ Anal Chem. 2020:1–19. doi:10.1080/03067319.2020.1811262.
  • Xu S, Ma J, Ji R, et al. Microplastics in aquatic environments: occurrence, accumulation, and biological effects. Sci Total Environ. 2020;703:134699. doi:10.1016/j.scitotenv.2019.134699.
  • Enyoh CE, Shafea L, Verla AW, et al. Microplastics exposure routes and toxicity studies to ecosystems: an overview. Environ Anal Health Toxicol. 2020;35(1):e2020004. doi:10.5620/eaht.e2020004.
  • Issac MN, Kandasubramanian B. Effect of microplastics in water and aquatic systems. Environ Sci Pollut Res. 2021;28:19544–19562. doi:10.1007/s11356-021-13184-2.
  • Verla AW, Enyoh CE, Verla EN, et al. Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Appl Sci. 2019;1:1400. doi:10.1007/s42452-019-1352-0.
  • Enyoh CE, Franklyn OO, Andrew WV, et al. “Plasti-remediation”: advances in the potential use of environmental plastics for pollutant removal. Environ Technol Innov. 2021;23:101791. doi:10.1016/j.eti.2021.101791.
  • Mohd A. Presence of phenol in wastewater effluent and its removal: an overview. Int J Environ Anal Chem. 2020. doi:10.1080/03067319.2020.1738412.
  • Abbas MN, Al-Hermizy SM, Abudi ZN, et al. Phenol biosorption from polluted aqueous solutions by Ulva lactuca alga using batch mode unit. J Ecol Eng. 2019;20(6):225–235. doi:10.12911/22998993/109460.
  • USEPA (US Environmental Protection Agency). Sampling and analysis procedure for screening of industrial effluents for priority pollutants. Cincinnati (OH): Environment Monitoring and Support Laboratory; 1977.
  • ATSDR. Toxicological profile for phenol. Atlanta (GA): Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine/Applied Toxicology Branch; 2008; [cited 2022 Feb 16]. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp115.pdf.
  • Bruce RM, Santodonato J, Neal MW. Summary review of the health effects associated with phenol. Toxicol Ind Health. 1987;3(4):535–568. doi:10.1177/074823378700300407.
  • Saha N, Bhunia F, Kaviraj A. Toxicity of phenol to fish and aquatic ecosystems. Bull Environ Contam Toxicol. 1999;63:195–202. doi:10.1007/s001289900966.
  • Kulkarni SJ, Kaware JP. Review on research for removal of phenol from wastewater. J Sci Res Publ. 2013;3(4):1–5.
  • Duan W, Meng F, Lin Y, et al. Toxicological effects of phenol on four marine microalgae. Environ Toxicol Pharmacol. 2017;52:170–176. doi:10.1016/j.etap.2017.04.006.
  • Anisuzzaman SM, Bono A, Krishnaiah D, et al. A study on dynamic simulation of phenol adsorption in activated carbon packed bed column. J King Saud Univ Eng Sci. 2016;28:47–55.
  • Mendes M, Touze Foltz N, Gardoni M, et al. Diffusion of phenolic compounds through polyethylene films. Geosynth Int. 2014;21(2):137–150. doi:10.1680/gein.14.00005.hal-01493796.
  • Lončarski M, Aleksandra T, Marijana KI, et al. Modelling of the adsorption of chlorinated phenols on polyethylene and polyethylene terephthalate microplastic. J Serb Chem Soc. 2020;85(5):697–709.
  • Liu Z, Qin Q, Hu Z, et al. Adsorption of chlorophenols on polyethylene terephthalate microplastics from aqueous environments: kinetics, mechanisms and influencing factors. Environ Pollut. 2020;265:114926. doi:10.1016/j.envpol.2020.114926.
  • Godoy V, Martín-Lara MA, Calero M, et al. The relevance of interaction of chemicals/pollutants and microplastic samples as route for transporting contaminants. Process Saf Environ Prot. 2020. doi:10.1016/j.psep.2020.03.033.
  • Enyoh CE, Qingyue W, Prosper O. Response surface methodology for modeling the adsorptive uptake of phenol from aqueous solution using adsorbent polyethylene terephthalate microplastics. Chem Eng J Adv. 2022. doi:10.1016/j.ceja.2022.100370.
  • Marcus Y, Glikberg S. Recommended methods for the purification of solvents and tests for impurities: methanol and ethanol. Pure Appl Chem. 2016;57; doi:10.1515/iupac.57.0023.
  • Pang YJ, Xu WS, Yang BT, et al. Influence of early thermal-oxidative ageing on the structure and properties of polyoxymethylene copolymer. R Soc Open Sci. 2021;8(6):210034. doi:10.1098/rsos.210034.
  • Tuohedi N, Wang Q. Preparation and evaluation of epoxy resin prepared from the liquefied product of cotton stalk. Processes. 2021;9(8):1417.
  • Enyoh CE, Isiuku BO. 2, 4, 6-trichlorophenol (TCP) removal from aqueous solution using Canna indica L.: kinetic isotherm and thermodynamic studies. Chem Ecol. 2020. doi:10.1080/02757540.2020.1821673.
  • Eurachem. The fitness for purpose of analytical method: a laboratory guide to method validation and related topics. 1998. Available from: https://www.eurachem.org/guides/pdf/valid.pdf.
  • Christian GD. Analytical chemistry. 6th ed. New York (NY): Wiley; 2003; p. 128.
  • Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898;24:1–39.
  • Ho YS. Selection of optimum sorption isotherm. Carbon. 2004;42(10):2115–2116.
  • Enyoh CE, Wang Q, Weiqian W, et al. Sorption of per- and polyfluoroalkyl substances (PFAS) using polyethylene (PE) microplastics as adsorbent: grand canonical Monte Carlo and molecular dynamics (GCMC-MD) studies. Int J Environ Anal Chem. 2022. doi:10.1080/03067319.2022.2070016.
  • Fotopoulou KN, Karapanagioti HK. Surface properties of beached plastics. Environ Sci Pollut Res. 2015. doi:10.1007/s11356-015-4332-y.
  • Meng X, Xu C, Li L, et al. Cracking performance and feed characterization study of catalytic pyrolysis for light olefin production. Energy Fuels. 2011;25:1357–1363.
  • Alzuhairi MAH, Al-Ghaban AMH, Almutalabi SN. Chemical recycling of polyethylene terephthalate (PET) as additive for asphalt. ZANCO J Pure Appl Sci. 2016;28(2):s675–s679.
  • Yoshioka T, Motoki T, Okuwaki A. Kinetics of hydrolysis of poly(ethylene terephthlate) powder in sulfuric acid by a modified shrinking-core model. Ind Eng Chem Res. 2001;40:75–79.
  • Carta D, Cao G, D’Angeli C. Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis. Environ Sci Pollut Res. 2003;10:390–394. doi:10.1065/espr2001.12.104.8.
  • Alzuhairi MAH, Khalil BI, Hadi RS. Nano ZnO catalyst for chemical recycling of polyethylene terephthalate (PET). Eng Technol J. 2017;35(8 Part A):831–837.
  • Munoz M, David O, Julia N-S, et al. Adsorption of micropollutants onto realistic microplastics: role of microplastic nature, size, age, and NOM fouling. Chemosphere. 2021; 283:131085. doi:10.1016/j.chemosphere.2021.131085.
  • Edge M, Hayes M, Mohammadian M, et al. Aspects of poly (ethylene terephthalate) degradation for archival life and environmental degradation. Polym Degrad Stab. 1991;32:131–153. doi:10.1016/0141-3910(91)90047-U.
  • Ioakeimidis C, Fotopoulou KN, Karapanagioti HK, et al. The degradation potential of PET bottles in the marine environment: an ATR-FTIR based approach. Sci Rep. 2016;6:23501. doi:10.1038/srep23501.
  • Miranda Vidales JM, Narváez Hernández L, Tapia López JI, et al. Polymer mortars prepared using a polymeric resin and particles obtained from waste pet bottle. Constr Build Mater. 2014;65:376–383. doi:10.1016/j.conbuildmat.2014.04.114.
  • Stuart BH. Polymer analysis. 1st ed. Chichester: John Wiley & Sons Ltd; 2002.
  • Ingole RS, Lataye DH. Adsorptive removal of phenol from aqueous solution using activated carbon prepared from babul sawdust. J Hazard Toxic Radioact Waste. 2015;19(4):04015002. doi:10.1061/(asce)hz.2153-5515.0000271.
  • Ekpete OA, Horsfall M, Jr., Tarawou T. Potential of fluted pumpkin and commercial activated carbons for phenol removal in aqueous systems. ARPN J Eng Appl Sci. 2010;5(9):1–9.
  • Nidhi Y, Maddheshiaya DN, Rawat S, et al. Adsorption and equilibrium studies of phenol and para-nitrophenol by magnetic activated carbon synthesised from cauliflower waste. Environ Eng Res. 2020;25(5):742–752. doi:10.4491/eer.2019.238.
  • Mojoudi N, Mirghaffari N, Soleimani M, et al. Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies. Sci Rep. 2019;9:19352. doi:10.1038/s41598-019-55794-4.
  • Tubić A, Lončarski M, Maletić S, et al. Significance of chlorinated phenols adsorption on plastics and bioplastics during water treatment. Water. 2019;11:2358. doi:10.3390/w11112358.
  • Suresh S, Srivastava V, Mishra I. Studies of adsorption kinetics and regeneration of aniline, phenol, 4-chlorophenol and 4-nitrophenol by activated carbon. Chem Ind Chem Eng Q. 2013;19:195–212.
  • Hendrickson E, Minor EC, Schreiner K. Microplastic abundance and composition in western lake superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environ Sci Technol. 2018;52(4):1787–1796.
  • Li H, Wang F, Li J, et al. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere. 2021;264:128556. doi:10.1016/j.chemosphere.2020.128556.
  • Xie LC, Ding KL, Liu Y, et al. Experimental, thermodynamic and kinetic studies for the adsorption of phenolic compounds derived from oilfield wastewater by the corncob hydrochar. Open J Yangtze Gas Oil. 2019;4:285–300. doi:10.4236/ojogas.2019.44023.
  • Juang RS, Shiau JY, Shao HJ. Effect of temperature on equilibrium adsorption of phenols onto nonionic polymeric resins. Sep Sci Technol. 1999;34(9):1819–1831. doi:10.1081/ss-100100740.
  • Bullen J, Saleesongsom S, Weiss DJ. A revised pseudo-second order kinetic model for adsorption, sensitive to changes in sorbate and sorbent concentrations. Chemxriv. 2020:1–27.
  • Isiuku BO, Enyoh CE. A review: water pollution by heavy metal and organic pollutants: brief review of sources, effects and progress on remediation with aquatic plants. Anal Methods Environ Chem J. 2019;2:5–38. doi:10.24200/amecj.v2.i03.66.
  • de la Luz-Asunción M, Sánchez-Mendieta V, Martínez-Hernández AL, et al. Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: kinetic and equilibrium studies. J Nanomater. 2015:1–14. doi:10.1155/2015/405036.
  • Cheung WH, Szeto YS, McKay G. Intraparticle processes during acid dye adsorption onto chitosan. Bioresour Technol. 2007;98:2897–2904. doi:10.1016/j.biortech.2006.09.045.
  • Enyoh CE, Beniah OI. Removal of pentachlorophenol (PCP) from aqueous solution using Canna indica L.: kinetics, isotherm and thermodynamic studies. Arab J Chem. 2021;8(2):193–213.
  • El-henday ANA. Surface and adsorptive properties of carbons prepared from biomass. Appl Surf Sci. 2005;252:287–295.
  • Duru CE, Margaret CE, Ijeoma AD. Surface modification of powdered maize husk with sodium hydroxide for enhanced adsorption of Pb(II) ions from aqueous solution. J Environ Treat Tech. 2021;9(1):95–104.
  • Hüffer T, Hofmann T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ Pollut. 2016;214:194–201. doi:10.1016/j.envpol.2016.04.018.
  • Wang S, Hao C, Wang D, et al. Hydrogen bonding dynamics of phenol-(H2O)2 cluster in the electronic excited state: a DFT/TDDFT study. J Korean Chem Soc. 2011;55:385–391. doi:10.5012/jkcs.2011.55.3.385.
  • Katada M, Fujii A. Infrared spectroscopy of protonated phenol–water clusters. J Phys Chem A. 2018;122(27):5822–5831. doi:10.1021/acs.jpca.8b04446.
  • Guo X, Liu Y, Wang J. Sorption of sulfamethazine onto different types of microplastics: a combined experimental and molecular dynamics simulation study. Mar Pollut Bull. 2019;145:547–554. doi:10.1016/j.marpolbul.2019.06.0.
  • Kotdawala RR, Kazantzis N, Thompson RW. Analysis of binary adsorption of polar and nonpolar molecules in narrow slit-pores by mean-field perturbation theory. J Chem Phys. 2005;123(24):244709. doi:10.1063/1.2133736.
  • Chen Y, Li J, Wang F, et al. Adsorption of tetracyclines onto polyethylene microplastics: a combined study of experiment and molecular dynamics simulation. Chemosphere. 2021;265:129133. doi:10.1016/j.chemosphere.2020.129133.
  • Shi W, Ding C, Yan J, et al. Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces. Desalination. 2012;291:8–14.
  • Keiluweit M, Kleber M. Molecular-level interactions in soils and sediments: the role of aromatic π-systems. Environ Sci Technol. 2009;43:3421–3429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.