172
Views
0
CrossRef citations to date
0
Altmetric
Articles

Low cost and renewable H2S-biofilter inoculated with Trichoderma harzianum

, , , , , ORCID Icon & ORCID Icon show all
Pages 1508-1521 | Received 11 Jul 2022, Accepted 02 Nov 2022, Published online: 27 Nov 2022

References

  • Bouzonville A, Peng S, Atkins S. Review of long term landfill gas monitoring data and potential for use to predict emissions influenced by climate change, 21th Clean Air Soc. Aust. New Zeal. Conf. Sydney, Aust. 2 (2013). https://www.atmoterra.com/files/publications/ABouzonville-Paper-LFG-Climate-Change.pdf.
  • Cioabla AE, Ionel I, Dumitrel GA, et al. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol Biofuels. 2012;5:1. doi:10.1186/1754-6834-5-1.
  • Özcan MD, Özcan O, Akın AN. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM. Environ Technol. 2020;41:14–28. doi:10.1080/09593330.2019.1639828.
  • Sigot L, Ducom G, Benadda B, et al. Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell. Environ Technol. 2016;37:86–95. doi:10.1080/09593330.2015.1063707.
  • Makareviciene V, Sendzikiene E. Technological assumptions for biogas purification. Environ Technol. 2015;36:1745–1750. doi:10.1080/09593330.2015.1008585.
  • Mancino G, Cimino S, Lisi L. Sulphur poisoning of alumina supported Rh catalyst during dry reforming of methane. Catal Today. 2016;277:126–132. doi:10.1016/j.cattod.2015.10.035.
  • Abatzoglou N, Boivin S. A review of biogas purification processes. Biofuels Bioprod Biorefin. 2009;6:42–71. doi:10.1002/bbb.117.
  • Lestari RAS, Sediawan WB, Syamsiah S, et al. Hydrogen sulfide removal from biogas using a salak fruit seeds packed bed reactor with sulfur oxidizing bacteria as biofilm. J Environ Chem Eng. 2016;4:2370–2377. doi:10.1016/j.jece.2016.04.014.
  • Courtois A, Andrès Y, Dumont É. H2S biofiltration using expanded schist as packing material: influence of packed bed configurations at constant EBRT. J Chem Technol Biotechnol. 2015;90:50–56. doi:10.1002/jctb.4456.
  • Dumont E. H2S removal from biogas using bioreactors: a review. Int J Energy Environ. 2015;6:479–498.
  • Chaiprapat S, Mardthing R, Kantachote D, et al. Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration. Process Biochem. 2011;46:344–352. doi:10.1016/j.procbio.2010.09.007.
  • Charnnok B, Suksaroj T, Boonswang P, et al. Oxidation of hydrogen sulfide in biogas using dissolved oxygen in the extreme acidic biofiltration operation. Bioresour Technol. 2013;131:492–499. doi:10.1016/j.biortech.2012.12.114.
  • Kim JH, Rene ER, Park HS. Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter. Bioresour Technol. 2008;99:583–588. doi:10.1016/j.biortech.2006.12.028.
  • Li L, Han Y, Yan X, et al. H2S removal and bacterial structure along a full-scale biofilter bed packed with polyurethane foam in a landfill site. Bioresour Technol. 2013;147:52–58. doi:10.1016/j.biortech.2013.07.143.
  • López ME, Rene ER, Malhautier L, et al. One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: Performance and microbial community analysis. Bioresour Technol. 2013;138:245–252. doi:10.1016/j.biortech.2013.03.136.
  • Vergara-Fernández A, Revah S, Moreno-Casas P, et al. Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnol Adv. 2018;36:1079–1093. doi:10.1016/j.biotechadv.2018.03.008.
  • Gospodarek M, Rybarczyk P, Brillowska-Dąbrowska A, et al. The use of various species of fungi in biofiltration of air contaminated with odorous volatile organic compounds. E3S Web Conf. 2019;100; doi:10.1051/e3sconf/201910000021.
  • Vergara-Fernández A, Scott F, Moreno-Casas P. Biofiltration of volatile organic compounds and polycyclic aromatic hydrocarbons, From Biofiltration to Promis. Options Gaseous Fluxes Biotreat. 2020: 129–151. doi:10.1016/B978-0-12-819064-7.00007-8.
  • Liu C, Liu J, Li J, et al. Removal of H2S by co-immobilized bacteria and fungi biocatalysts in a bio-trickling filter. Process Saf Environ Prot. 2013;91:145–152. doi:10.1016/j.psep.2012.03.002.
  • Hansen MJ, Pedersen CL, Søgaard LH, et al. Removal of hydrogen sulphide from pig house using biofilter with fungi. Biosyst Eng. 2017;167:32–39. doi:10.1016/j.biosystemseng.2017.12.004.
  • Van Groenestijn JW. Biotechniques for air pollution control: past, present and future trends. Proc Biotech Air Pollut Control. 2005;1978:3–12. https://core.ac.uk/download/pdf/61908782.pdf.
  • Phae C-G, Shoda M. A new fungus which degrades hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide. Biotechnol Lett. 1991;13:375–380. doi:10.1007/BF01027686.
  • Xu HB, Tsukuda M, Takahara Y, et al. Lithoautotrophical oxidation of elemental sulfur by fungi including Fusarium solani isolated from sandstone Angkor temples. Int Biodeterior Biodegrad. 2018;126:95–102. doi:10.1016/j.ibiod.2017.10.005.
  • Masaki Y, Ozawa R, Kageyama K, et al. Degradation and emission of carbonyl sulfide, an atmospheric trace gas, by fungi isolated from forest soil. FEMS Microbiol Lett. 2016;363:1–7. doi:10.1093/femsle/fnw197.
  • Chay Tay C, Suhaimi AA, Abdul-Talib S, et al. Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Curr Sci. 2011;100:648–653. doi:10.1007/s11814-010-0435-9.
  • Zhang J, Elser JJ. Carbon: Nitrogen: Phosphorus stoichiometry in fungi: a meta-analysis. Front Microbiol. 2017;8:1–9. doi:10.3389/fmicb.2017.01281.
  • Williams RJP. A system’s view of the evolution of life. J R Soc Interface. 2007;4:1049–1070. doi:10.1098/rsif.2007.0225.
  • Sulfur. [Accessed September 30, 2021] https://med.libretexts.org/Under_Construction/8.3%3A_Major_Minerals/Sulfur; 2019.
  • Paul EA, Clark FE. Soil microbiology and biochemistry. 2nd ed Colorado: Fort Collins; 1996.
  • Barbusiński K, Kalemba K. Use of biological methods for removal of H2S from biogas in wastewater treatment plants – A Review. Archit Civ Eng Environ. 2016;9:103–112. doi:10.21307/acee-2016-011.
  • Gow NA, Gadd GM. Growing fungus. Springer Netherlands; 1995. doi:10.1007/978-0-585-27576-5.
  • Thompson CR, Kats G. Effects of continuous H2S fumigation on crop and forest plants. Environ Sci Technol. 1978;12:550–553. doi:10.1021/es60141a001.
  • Dumont E, Da Silva Cabral F, Cloirec PL, et al. Biofiltration using peat and a nutritional synthetic packing material: influence of the packing configuration on H2S removal. Environ Technol. 2013;34:1123–1129. doi:10.1080/09593330.2012.736691.
  • Jin Y, Guo L, Veiga MC, et al. Fungal biofiltration of α-pinene: Effects of temperature, relative humidity, and transient loads. Biotechnol Bioeng. 2007;96:433–443. doi:10.1002/bit.21123.
  • Bruneel J, Huepe Follert JL, Laforce B, et al. Dynamic performance of a fungal biofilter packed with perlite for the abatement of hexane polluted gas streams using SIFT-MS and packing characterization with advanced X-ray spectroscopy. Chemosphere. 2020;253:1–10. doi:10.1016/j.chemosphere.2020.126684.
  • Ortiz I, García-Peña I, Christen P, et al. Effects of inoculum type, packing material and operating conditions on pentane biofiltration. Chem Biochem Eng Q. 2008;22:179–184.
  • Gutiérrez-Acosta OB, Arriaga S, Escobar-Barrios VA, et al. Performance of innovative PU-foam and natural fiber-based composites for the biofiltration of a mixture of volatile organic compounds by a fungal biofilm. J Hazard Mater. 2012;201–202:202–208. doi:10.1016/j.jhazmat.2011.11.068.
  • Zhu R, Li S, Bao X, et al. Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms. Sci Rep. 2017;7:1–8. doi:10.1038/srep42241.
  • Van Langenhove H, Wuyts E, Schamp N. Elimination of hydrogen sulphide from odorous air by a wood bark biofilter. Water Res. 1986;20:1471–1476. doi:10.1016/0043-1354(86)90109-0.
  • Premkumar R, Devi S, Krishnamohan N, et al. Wood chip based filter media for removal of pollutants from waste air: review. Int J ChemTech Res. 2013;5:2830–2836.
  • Barbusinski K, Kalemba K, Kasperczyk D, et al. Biological methods for odor treatment – A review. J Clean Prod. 2017;152:223–241. doi:10.1016/j.jclepro.2017.03.093.
  • Nsami JN, Mbadcam JK. The adsorption efficiency of chemically prepared activated carbon from cola Nut shells by ZnCl2 on methylene blue. J Chem. 2013: 1–7. doi:10.1155/2013/469170.
  • Rattanapan C, Ounsaneha W. Removal of hydrogen sulfide Gas using biofiltration – A review. Walailak J. 2012;9:9–18.
  • Ghazy M, Basiouny M, Badawy M. Performance of agricultural wastes as a biofilter media for low-cost wastewater treatment technology. Adv Res. 2016;7:1–13. doi:10.9734/air/2016/27926.
  • Santos-Clotas E, Cabrera-Codony A, Boada E, et al. Efficient removal of siloxanes and volatile organic compounds from sewage biogas by an anoxic biotrickling filter supplemented with activated carbon. Bioresour Technol. 2019;294:122136. doi:10.1016/j.biortech.2019.122136.
  • Chaghouri M. Analyse et purification du biogaz par biofiltration et valorisation énergétique par reformage catalytique. Chimie analytique. Université du Littoral Côte d'Opale. Français. <NNT: 2021DUNK0584>; 2021.
  • Ghasemi R, Golbabaei F, Rezaei S, et al. A comparison of biofiltration performance based on bacteria and fungi for treating toluene vapors from airflow. AMB Express. 2020;10; doi:10.1186/s13568-019-0941-z.
  • Oh DI, Song JH, Hwang SJ, et al. Effects of adsorptive properties of biofilter packing materials on toluene removal. J Hazard Mater. 2009;170:144–150. doi:10.1016/j.jhazmat.2009.04.120.
  • Chen L, Hoff S, Cai L, et al. Evaluation of wood chip-based biofilters to reduce odor, hydrogen sulfide, and ammonia from swine barn ventilation air. J Air Waste Manag Assoc. 2009;59:520–530. doi:10.3155/1047-3289.59.5.520.
  • Rene ER, Jin Y, Veiga MC, et al. Two-stage gas-phase bioreactor for the combined removal of hydrogen sulphide, methanol and -pinene. Environ Technol. 2009;30:1261–1272. doi:10.1080/09593330903196868.
  • Gerrity S, Kennelly C, Clifford E, et al. Hydrogen sulfide oxidation in novel horizontal-flow biofilm reactors dominated by an Acidithiobacillus and a Thiobacillus species. Environ Technol. 2016;37:2252–2264. doi:10.1080/09593330.2016.1147609.
  • Aita BC, Mayer FD, Muratt DT, et al. Biofiltration of H2S-rich biogas using Acidithiobacillus thiooxidans. Clean Technol Environ Policy. 2016;18:689–703. doi:10.1007/s10098-015-1043-5.
  • Devinny J, Deshusses M, Webster T. Biofiltration for air pollution control. CRC press; 2017.
  • Leelavathi M, Vani L, Reena P. Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. Int J Curr Microbiol Appl Sci. 2014;3:96–103.
  • Ghoniem AA, El-Hai KMA, El-Khateeb AY, et al. Enhancing the potentiality of Trichoderma harzianum against pythium pathogen of beans using chamomile (Matricaria chamomilla L.) flower extract. Molecules. 2021;26; doi:10.3390/molecules26041178.
  • Marques E, Martins I, De Mello SCM. Potencial antifúngico de extratos brutos de trichoderma spp. Biota Neotrop. 2018;18:1–5. doi:10.1590/1676-0611-bn-2017-0418.
  • Juntranapaporn J, Vikromvarasiri N, Soralump C, et al. Hydrogen sulfide removal from biogas in biotrickling filter system inoculated with Paracoccus pantotrophus. Int J Hydrogen Energy. 2019;44:29554–29560. doi:10.1016/j.ijhydene.2019.03.069.
  • Vikromvarasiri N, Juntranapaporn J, Pisutpaisal N. Performance of Paracoccus pantotrophus for H2S removal in biotrickling filter. Int J Hydrogen Energy. 2017;42:27820–27825. doi:10.1016/j.ijhydene.2017.05.232.
  • Friedrich C, Rother D, Bardischewsky F, et al. Oxidation of reduced inorganic sulfur compounds by bacteria emergence of a common mechanism. Appl Environ Microbiol. 2001;67:2873–2882. doi:10.1128/AEM.67.7.2873-2882.2001.
  • You J, Chen J, Sun Y, et al. Treatment of mixed waste-gas containing H2S, dichloromethane and tetrahydrofuran by a multi-layer biotrickling filter. J Clean Prod. 2021;319:128630. doi:10.1016/j.jclepro.2021.128630.
  • Vyas SR, Prasad N. On the cultural methods of differentiation of Rhizobium from Agrobacterium radiobacter. Proc Indian Acad Sci - Sect B. 1959;49:115–123. doi:10.1007/BF03051640.
  • Xia Y, Lü C, Hou N, et al. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME J. 2017;11:2754–2766. doi:10.1038/ismej.2017.125.
  • Guimarães BG, Barbosa RL, Soprano AS, et al. Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. J Biol Chem. 2011;286:26148–26157. doi:10.1074/jbc.M111.234039.
  • Sato H, Takakuwa S, Kimura T, et al. Isolation from soil of aerobic chemoheterotrophic methanethiol sulfide bacteria capable of decomposing and hydrogen 2 department of natural science, Kyoto Women's University, Kyoto 605-8501, Japan. Microbes Environ. 1999;14:131–137. doi:10.1264/jsme2.14.131.
  • Je J, Ki-hyo J, Sihn E, et al. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J Microbiol Biotechnol. 2004;15:716–721.
  • Chen YF, Yin YN, Zhang XM, et al. Curtobacterium flaccumfaciens pv. beticola, a new pathovar of pathogens in sugar beet. Plant Dis. 2007;91:677–684. doi:10.1094/PDIS-91-6-0677.
  • Klement Z, Rodolph K, Sands DC. Methods in phytobacteriology. Budapest: akadémiai Kiadó; 1990.
  • F.L. Ocho, Biochemical, pathological and genetic characterization of strains of Ralstonia solanacearum (Smith) from Ethiopia and biocontrol of R. solanacearum with bacterial antagonists; 2006.
  • Seleim MAA, Abo-Elyousr KAM, Abd-El-Moneem KM, et al. First report of bacterial wilt caused by Ralstonia solanacearum biovar 2 race 1 on tomato in Egypt. Plant Pathol J. 2014;30:299–303. doi:10.5423/PPJ.NT.10.2013.0101.
  • Marzluf G. Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol. 1997;51:73–96. doi:10.1146/annurev.micro.51.1.73.
  • Traynor AM, Sheridan KJ, Jones GW, et al. Involvement of sulfur in the biosynthesis of essential metabolites in pathogenic fungi of animals, particularly Aspergillus spp.: molecular and therapeutic implications. Front Microbiol. 2019;10:1–16. doi:10.3389/fmicb.2019.02859.
  • Kushkevych I, Cejnar J, Treml J, et al. Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells. 2020;9:1–16. doi:10.3390/cells9030698.
  • Wang T, Ran M, Li X, et al. The pathway of sulfide oxidation to octasulfur globules in the cytoplasm of aerobic bacteria. Appl Environ Microbiol. 2022;88:1–12.
  • Hill B, Schubert E, Nokes M. Elemental sulfur: accumulation in different species of fungi. Science. 1977;196:341–342. doi:10.1126/science.850785.
  • Teng ZJ, Qin QL, Zhang W, et al. Correction to: Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. Microbiome. 2021;9(207):1–17. doi:10.1186/s40168-020-00939-1.
  • Lin WC, Chen YP, Tseng CP. Pilot-scale chemical-biological system for efficient H2S removal from biogas. Bioresour Technol. 2013;135:283–291. doi:10.1016/j.biortech.2012.10.040.
  • Chung YC, Ho KL, Tseng CP. Treatment of high H2S concentrations by chemical absorption and biological oxidation process. Environ Eng Sci. 2006;23:942–953. doi:10.1089/ees.2006.23.942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.