889
Views
0
CrossRef citations to date
0
Altmetric
Articles

Carbon-based materials for water disinfection and heavy metals removal

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 1810-1828 | Received 16 Aug 2022, Accepted 24 Nov 2022, Published online: 12 Dec 2022

References

  • Abdullah N, Shameli K, Ezzat Abdullah EC, et al. Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Compos B: Eng. 2019;162:538–568. doi:10.1016/j.compositesb.2018.12.075
  • Barnett T, Adam J, Lettenmaier D. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 2005;438(7066):303–309. doi:10.1038/nature04141
  • Ridoutt B, Pfister S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Change. 2010;20(1):113–120. doi:10.1016/j.gloenvcha.2009.08.003
  • World Health Organization. (2011). Guidelines for drinking-water quality (Vol. 1). Geneva: WHO Press.
  • Rao RAK, Khan MA. Biosorption of bivalent metal ions from aqueous solution by an agricultural waste: kinetics: thermodynamics and environmental effects. Colloids Surf, A. 2009;332(2-3):121–128. doi:10.1016/j.colsurfa.2008.09.005
  • Teoh YP, Khan MA, Choong TSY. Kinetic and isotherm studies for lead adsorption from aqueous phase on carbon coated monolith. Chem Eng J. 2013;217:248–255. doi:10.1016/j.cej.2012.12.013
  • Elimelech M, Montgomery M. (2007). Water and sanitation in developing countries: including health in the equation.
  • Serafini M, Almeida A, Junior A, et al. Avaliação de tecnologias de dessalinização de água a partir da análise dos pedidos de patentes. Geintec. 2012;2(1):42–51. doi:10.7198/S2237-07222012000100005
  • Castro CS, Guerreiro MC, Gonçalves M, et al. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. J Hazard Mater. 2009;164(2-3):609–614. doi:10.1016/j.jhazmat.2008.08.066
  • Dinh NX, Chi DT, Lan NT, et al. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity. Appl Phys A. 2015;119(1):85–95. doi:10.1007/s00339-014-8962-6
  • Lofrano G, Carotenuto M, Libralato G, et al. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res. 2016;92:22–37. doi:10.1016/j.watres.2016.01.033
  • Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. 2017;49(2):137–152. doi:10.1016/j.ijantimicag.2016.11.011
  • Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial silver nanomaterials. Coord Chem Rev. 2018;357:1–17. doi:10.1016/j.ccr.2017.11.019
  • Chung Y, Su Y, Chen C, et al. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin. 2004;25(7):932–936.
  • Liu Y, He L, Mustapha A, et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 2009;107(4):1193–1201. doi:10.1111/j.1365-2672.2009.04303.x
  • Rezaei-Zarchi S, Javed A, Ghani MJ, et al. Comparative study of antimicrobial activities of TiO2 and CdO nanoparticles against the pathogenic strain of Escherichia coli. Iran J Pathol. 2010;5(2):83–89.
  • Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627. doi:10.1126/science.1114397
  • Hajipour MJ, Fromm KM, Akbar Ashkarran A, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499–511. doi:10.1016/j.tibtech.2012.06.004
  • Kohanski MA, Dwyer DJ, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797–810. doi:10.1016/j.cell.2007.06.049
  • Kumar SR, Imlay JA. How escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway. J Bacteriol. 2013;195(20):4569–4579. doi:10.1128/JB.00737-13
  • Ghasemzadeh G, Momenpour M, Omidi F, et al. Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng. 2014;8(4):471–482. doi:10.1007/s11783-014-0654-0
  • Hlongwane GN, Sekoai PT, Meyyappan M, et al. Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci Total Environ. 2019;656:808–833. doi:10.1016/j.scitotenv.2018.11.257
  • Jin Y, Liu F, Shan C, et al. Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res. 2014;50:124–134. doi:10.1016/j.watres.2013.11.045
  • Hatchett DW, White HS. Electrochemistry of sulfur adlayers on the low-index faces of silver. J Phys Chem. 1996;100(23):9854–9859. doi:10.1021/jp953757z
  • Kirstein J, Turgay K. A New tyrosine phosphorylation mechanism involved in signal transduction in bacillus subtilis. Microbial Physiology. 2005;9(3-4):182–188. doi:10.1159/000089646
  • Shrivastava S, Bera T, Roy A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22). doi:10.1088/0957-4484/18/22/225103
  • Dua V, Surwade SP, Ammu S, et al. All-Organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem, Int Ed. 2010;49(12):2154–2157. doi:10.1002/anie.200905089
  • Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta (BBA) - Biomembr. 1999;1462(1-2):11–28. doi:10.1016/S0005-2736(99)00198-4
  • Bhatnagar A, Hogland W, Marques M, et al. An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J. 2013;219:499–511. doi:10.1016/j.cej.2012.12.038
  • Shim J-W, Park S-J, Ryu S-K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon N Y. 2001;39(11):1635–1642. doi:10.1016/S0008-6223(00)00290-6
  • Chen C, Wang X. Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res. 2006;45(26):9144–9149. doi:10.1021/ie060791z
  • Mohammed L, Gomaa HG, Ragab D, et al. Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology. 2017;30:1–14. doi:10.1016/j.partic.2016.06.001
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012
  • Ambashta RD, Sillanpaa M. Water purification using magnetic assistance: a review. J Hazard Mater. 2010;180(1-3):38–49. doi:10.1016/j.jhazmat.2010.04.105
  • Park S, Park HH, Ko YS, et al. Disinfection of various bacterial pathogens using novel silver nanoparticle-decorated magnetic hybrid colloids. Sci Total Environ. 2017;609:289–296. doi:10.1016/j.scitotenv.2017.07.071
  • Abdolmaleki A, Mallakpour S, Mahmoudian M, et al. A new polyamide adjusted triazinyl-β-cyclodextrin side group embedded magnetic nanoparticles for bacterial capture. Chem Eng J. 2017;309:321–329. doi:10.1016/j.cej.2016.10.063
  • Khan MA, Alqadami AA, Otero M, et al. Heteroatom-doped magnetic hydrochar to remove post-transition and transition metals from water: synthesis: characterization, and adsorption studies. Chemosphere. 2019;218:1089–1099. doi:10.1016/j.chemosphere.2018.11.210
  • Kell A, Stewart G, Ryan S, et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentrationof gram-positive and gram-negative bacteria. ACS Nano. 2008;2(9):1777–1788. doi:10.1021/nn700183g
  • Huang Y-F, Wang Y-F, Yan X-P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol. 2010;44(20):7908–7913. doi:10.1021/es102285n
  • Suzuki M. Activated carbon fiber: fundamentals and applications. Carbon N Y. 1994;32(4):577–586. doi:10.1016/0008-6223(94)90075-2
  • Brasquet C, Cloirec P. Adsorption onto activated carbon fibers: application to water and air treatments. Carbon N Y. 1997;35(9):1307–1313. doi:10.1016/S0008-6223(97)00079-1
  • Frank E, Ingildeev D, Buchmeiser MR. (2017). High-performance PAN-based carbon fibers and their performance requirements. 7-30.
  • Expósito I, Minervini F, Amigo L, et al. Identification of antibacterial peptides from bovine k-casein. J Food Prot. 2006;69(12):2992–2997. doi:10.4315/0362-028X-69.12.2992
  • McCann KB, Shiell BJ, Michalski WP, et al. Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein. Int Dairy J. 2006;16(4):316–323. doi:10.1016/j.idairyj.2005.05.005
  • Wang Y, Ma J, Xu Q, et al. Fabrication of antibacterial casein-based ZnO nanocomposite for flexible coatings. Mater Des. 2017;113:240–245. doi:10.1016/j.matdes.2016.09.082
  • Belkhir K, Pillon C, Cayla A, et al. Antibacterial textile based on hydrolyzed milk casein. Materials (Basel). 2021;14(2):251. https://www.mdpi.com/1996-1944/14/2/251. doi:10.3390/ma14020251
  • Pereira L, Dias P, Soares OSGP, et al. Synthesis: characterization and application of magnetic carbon materials as electron shuttles for the biological and chemical reduction of the azo dye Acid Orange 10. Appl Catal, B. 2017;212:175–184. doi:10.1016/j.apcatb.2017.04.060
  • Pinto M, Ramalho PSF, Moreira NFF, et al. Application of magnetic nanoparticles for water purification. Environ Adv. 2020;2:100010. doi:10.1016/j.envadv.2020.100010
  • Serp, P., & Figueiredo, J. Surface chemistry of carbon materials. In: P. Serp, J. Figueiredo, editors. Carbon materials for catalysis. New Jersey & Canada: John Wiley & Sons, Inc; 2009. p. 45–92.
  • Sousa J, Pereira M, Figueiredo J. Catalytic oxidation of NO to NO 2 on N-doped activated carbons. Catal Today. 2011;176(1):383–387. doi:10.1016/j.cattod.2010.11.040
  • Jones N, Ray B, Ranjit KT, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71–76. doi:10.1111/j.1574-6968.2007.01012.x
  • Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, et al. Nanoparticles and their antimicrobial properties against pathogens including bacteria: fungi, parasites and viruses. Microb Pathog. 2018;123:505–526. doi:10.1016/j.micpath.2018.08.008
  • Webster TJ, Seil I. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed. 2012;2767. doi:10.1533/9780857096449
  • Santos ASGG, Ramalho PSF, Viana AT, et al. Feasibility of using magnetic nanoparticles in water disinfection. J Environ Manag. 2021;288:112410. doi:10.1016/j.jenvman.2021.112410
  • Lowell, S., Shields, J. E., Thomas, M. A., etal Surface area analysis from the langmuir and BET theories. In: S. Lowell, J. Shields, M Thomas, editors. Characterization of porous solids and powders: surface area, pore size and density. Dordrecht: Springer; 2004b. Vol. 16, p. 58–81.
  • Lowell, S., Shields, J. E., Thomas, M. A., etal Micropore analysis. In: S. Lowell, J. Shields, M. Thomas, editors. Characterization of porous soldis and powders: surface area, pore and density. Dordrecht: Springer; 2004a. Vol. 16, p. 129–156.
  • Jafari Kang A, Baghdadi M, Pardakhti A. Removal of cadmium and lead form aqueous solutions by acid-treated activated carbon nanocomposite. Desalin Water Treat. 2015;57(40):18782–18798. doi:10.1080/19443994.2015.1095123
  • Word Health Organization. Cadmium in drinking-water. In: M. Sheffer, editor. 4th (Ed.), Guidelines for drinking-water quality. Geneva: WHO Press; 2011a. p. 5–6.
  • Word Health Organization. Lead in driking-water. In: M. Sheffer, editor. 4th (Ed.), Guidelines for drinking-water quality. Geneva: WHO Press; 2011b. p. 10.
  • Qi P, Wickham E, Farrell H. Thermal and alkaline denaturation of bovine beta-casein. The Protein Jounal. 2004;23(6):389–402. doi:10.1023/B:JOPC.0000039553.66233.3f
  • Allison DG. A review: taking the sterile out of sterility. J Appl Microbiol. 1999;87(6):789–793. doi:10.1046/j.1365-2672.1999.00948.x
  • De Faria AF, Martinez DST, Meira SMM, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf B. 2014;113:115–124. doi:10.1016/j.colsurfb.2013.08.006
  • Karimov KA, Kritskii AV, Naboichenko SS, et al. Autoclave precipitation of iron from zinc sulfate solutions. KnE Mater Sci. 2017;2(2):76. doi:10.18502/kms.v2i2.950
  • Ristić M, Popović S, Musić S. Formation and properties of Cd(OH)2 and CdO particles. Mater Lett. 2004;58(20):2494–2499. doi:10.1016/j.matlet.2004.03.016
  • Yang S, Sun Y, Chen L, et al. Porous iron oxide ribbons grown on graphene for high-performance lithium storage. Sci Rep. 2012;2(1).
  • Oliveira L, Rios R, Fabris J, et al. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon N Y. 2002;40(12):2177–2183. doi:10.1016/S0008-6223(02)00076-3
  • Zhu L, Li H, Liu Z, et al. Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity. J Phys Chem C. 2018;122(17):9531–9539. doi:10.1021/acs.jpcc.8b01933
  • Sapkota KP, Lee I, Hanif MA, et al. Enhanced visible-light photocatalysis of nanocomposites of copper oxide and single-walled carbon nanotubes for the degradation of methylene blue. Catalysts. 2020;10(3):297–313. doi:10.3390/catal10030297
  • Teixeira A, Tristão J, Araujo M, et al. Iron a versatile element to produce materials for environmental applications. J Braz Chem Soc. 2012;23(9):1579–1593. doi:10.1590/S0103-50532012005000039
  • Halim MYA, Tan WL, Bakar N, et al. Surface characteristics and catalytic activity of copper deposited porous silicon powder. Materials (Basel). 2014;7(12):7737–7751. doi:10.3390/ma7127737
  • Figueiredo JL, Ribeiro FR. (2007). Actividade e Selectividade. In Catálise Heterogénea. Fundação Calouste Gulbenkian, 2ª Edição.
  • Rioseco F, Radovic L, García X, et al. Effect of Ag addition on thermal stability and catalytic properties of LaFeO3 perovskite. J Chil Chem Soc. 2010;55(1):44–49. doi:10.4067/S0717-97072010000100011
  • Katikaneani P, Vaddepally AK, Reddy Tippana N, et al. Phase transformation of iron oxide nanoparticles from hematite to maghemite in presence of polyethylene glycol: application as corrosion resistant nanoparticle paints. J Nanosci. 2016;2016:1–6. doi:10.1155/2016/1328463
  • Scheinost, A. C. Metal oxides. In D. Hillel, editor. Encyclopedia of soils in the environment. New York: Elsevier; 2005. p. 428–438.
  • Ma H, Liu Y, Fu Y, et al. Improved photocatalytic activity of copper heterostructure composites (Cu–Cu2O–CuO/AC) prepared by simple carbothermal reduction. Aust J Chem. 2014;67(5):749–756. doi:10.1071/CH13456
  • U Picoli S, Durán M, F Andrade P, et al. Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL). Front Nanosci Nanotechnol. 2016;2(2):107–110. doi:10.15761/FNN.1000117
  • Hidayu AR, Muda N. Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Eng. 2016;148:106–113. doi:10.1016/j.proeng.2016.06.463
  • Tang Y-B, Liu Q, Chen F-Y. Preparation and characterization of activated carbon from waste ramulus mori. Chem Eng J. 2012;203:19–24. doi:10.1016/j.cej.2012.07.007
  • Lester JN. Heavy metals in wastewater and sludge treatment processes. Vol. 1. Florida: CRC Press; 1987. p. 12–14.
  • Wanna Y, Chindaduang A, Tumcharern G, et al. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal. J Magn Magn Mater. 2016;414:32–37. doi:10.1016/j.jmmm.2016.04.064
  • Al-Khaldi FA, Abu-Sharkh B, Abulkibash AM, et al. Cadmium removal by activated carbon: carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study. Desalin Water Treat. 2015;53(5):1417–1429.
  • Jusoh A, Su Shiung L, Ali NA, et al. A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination. 2007;206(1-3):9–16. doi:10.1016/j.desal.2006.04.048
  • Yang J, Hou B, Wang J, et al. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials. 2019;9(3):424. doi:10.3390/nano9030424
  • Giraldo L, Erto A, Moreno-Piraján JC. Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption. 2013;19(2-4):465–474. doi:10.1007/s10450-012-9468-1
  • Zapata K, Carrasco-Marín F, Arias JP, et al. Novel biomaterial design based on pseudomonas stutzeri–carbon xerogel microspheres for hydrocarbon removal from oil-in-saltwater emulsions: a new proposed treatment of produced water in oilfields. Journal of Water Process Engineering. 2020;35:101222. doi:10.1016/j.jwpe.2020.101222
  • Gehrke I, Geiser A, Somborn-Schulz A. Innovations in nanotechnology for water treatment. Nanotechnol: Sci Appl. 2015;8:1–17. doi:10.2147/NSA.S43773
  • Quang DV, Sarawade PB, Jeon SJ, et al. Effective water disinfection using silver nanoparticle containing silica beads. Appl Surf Sci. 2013;266:280–287. doi:10.1016/j.apsusc.2012.11.168
  • Ocsoy I, Temiz M, Celik C, et al. A green approach for formation of silver nanoparticles on magnetic graphene oxide and highly effective antimicrobial activity and reusability. J Mol Liq. 2017;227:147–152. doi:10.1016/j.molliq.2016.12.015
  • World Health Organization. (2004). Water treatment and pathogen control: process efficiency in achieving safe drinking water.
  • Anwar A, Perveen S, Ahmed S, et al. Silver nanoparticle conjugation with thiopyridine exhibited potent antibacterial activity against Escherichia coli and further enhanced by copper capping. Jundishapur J Microbiol. 2019;12(3):e74455.
  • Mermod M, Magnani D, Solioz M, et al. The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR): which affects copper permeability of the outer membrane of Escherichia coli. BioMetals. 2012;25(1):33–43. doi:10.1007/s10534-011-9510-x
  • Cai Y, Li C, Wu D, et al. Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chem Eng J. 2017;312:158–166. doi:10.1016/j.cej.2016.11.134
  • Yasuyuki M, Kunihiro K, Kurissery S, et al. Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling. 2010;26(7):851–858. doi:10.1080/08927014.2010.527000
  • Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions: metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257–267. doi:10.1016/j.yrtph.2018.08.007
  • Mukherjee SG, O’Claonadh N, Casey A, et al. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol in Vitro. 2012;26(2):238–251. doi:10.1016/j.tiv.2011.12.004
  • Agnihotri S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4(8):3974–3983. doi:10.1039/C3RA44507K
  • Bogdanović U, Lazić V, Vodnik V, et al. Copper nanoparticles with high antimicrobial activity. Mater Lett. 2014;128:75–78. doi:10.1016/j.matlet.2014.04.106
  • Kumar S, Nair RR, Pillai PB, et al. Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces. 2014;6(20):17426–17436. doi:10.1021/am504826q
  • Salam MA, Makki MSI, Abdelaal MYA. Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J Alloys Compd. 2011;509(5):2582–2587. doi:10.1016/j.jallcom.2010.11.094