325
Views
3
CrossRef citations to date
0
Altmetric
Articles

Multi response optimization of waste activated sludge oxidation and azo dye reduction in microbial fuel cell

ORCID Icon & ORCID Icon
Pages 2599-2611 | Received 24 Oct 2022, Accepted 02 Feb 2023, Published online: 21 Feb 2023

REFERENCES

  • Murali V, Ong S-A, Ho L-N, et al. Comprehensive review and compilation of treatment for Azo dyes using microbial fuel cells. Water Environ Res. 2013;85:270–277. doi:10.2175/106143012X13503213812481.
  • Cai J, Qaisar M, Sun Y. Effect of external resistance on substrate removal and electricity generation in microbial fuel cell treating sulfide and nitrate simultaneously. Environ Sci Pollut Res. 2020;27:238–249. doi:10.1007/s11356-019-06960-8.
  • He CS, Mu ZX, Yang HY, et al. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. Chemosphere. 2015;140:12–17. doi:10.1016/j.chemosphere.2015.03.059.
  • Zain SM, Ching NL, Jusoh S, et al. Different types of microbial fuel cell (MFC) systems for simultaneous electricity generation and pollutant removal. J Teknol. 2015;74:13–19. doi:10.11113/JT.V74.4544.
  • Pandit S, Sengupta A, Kale S, et al. Performance of electron acceptors in catholyte of a two-chambered microbial fuel cell using anion exchange membrane. Bioresour Technol. 2011;102:2736–2744. doi:10.1016/j.biortech.2010.11.038.
  • Fang C, Min B, Angelidaki I. Nitrate as an oxidant in the cathode chamber of a microbial fuel cell for both power generation and nutrient removal purposes. Appl Biochem Biotechnol. 2010;164:464–474. doi:10.1007/s12010-010-9148-0.
  • Zhang L-J, Tao H-C, Wei X-Y, et al. Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere. 2012;89:1177–1182. doi:10.1016/j.chemosphere.2012.08.011.
  • Mani P, Fidal VT, Bowman K, et al. Degradation of Azo Dye (acid orange 7). in a microbial fuel cell: comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Front Energy Res. 2019;7:101. doi:10.3389/FENRG.2019.00101.
  • Ding H, Li Y, Lu A, et al. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol. 2010;101:3500–3505. doi:10.1016/j.biortech.2009.11.107.
  • Liu L, Li FB, Feng CH, et al. Microbial fuel cell with an azo-dye-feeding cathode. Appl Microbiol Biotechnol. 2009;85:175–183. doi:10.1007/s00253-009-2147-9.
  • Khalid S, Alvi F, Fatima M, et al. Dye degradation and electricity generation using microbial fuel cell with graphene oxide modified anode. Mater Lett. 2018;220:272–276. doi:10.1016/j.matlet.2018.03.054.
  • Choi J, Ahn Y. Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. J Environ Manage. 2013;130:146–152. doi:10.1016/j.jenvman.2013.08.065.
  • Karlikanovaite-Balıkçı A, Karahan Özgün Ö. Generation of electricity and sludge reduction in a microbial fuel cell. J Int Environ Appl Sci. 2020;15:141–151.
  • Wen Q, Wu Y, Zhao L, et al. Production of electricity from the treatment of continuous brewery wastewater using a microbial fuel cell. Fuel. 2010;89:1381–1385. doi:10.1016/j.fuel.2009.11.004.
  • Mansoorian HJ, Mahvi AH, Jafari AJ, et al. Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzyme Microb Technol. 2013;52:352–357. doi:10.1016/j.enzmictec.2013.03.004.
  • Babanova S, Jones J, Phadke S, et al. Continuous flow, large-scale, microbial fuel cell system for the sustained treatment of swine waste. Water Environ Res. 2020;92:60–72. doi:10.1002/wer.1183.
  • Godvin Sharmila V, Kumar G, Sivashanmugham P, et al. Phase separated pretreatment strategies for enhanced waste activated sludge disintegration in anaerobic digestion: An outlook and recent trends. Bioresour Technol. 2022;363:127985. doi:10.1016/j.biortech.2022.127985.
  • Sarma R, Tamuly A, Kakati BK. Recent developments in electricity generation by microbial fuel cell using different substrates. Mater Today Proc. 2022;49:457–463. doi:10.1016/j.matpr.2021.02.522.
  • Ayol A, Biryol İ, Taşkan E, et al. Enhanced sludge stabilization coupled with microbial fuel cells (MFCs). Int J Hydrogen Energy. 2021;46:29529–29540. doi:10.1016/j.ijhydene.2020.10.143.
  • Cecconet D, Molognoni D, Callegari A, et al. Agro-food industry wastewater treatment with microbial fuel cells: energetic recovery issues. Int J Hydrogen Energy. 2018;43:500–511. doi:10.1016/j.ijhydene.2017.07.231.
  • Shahi A, Velayudhaperumal Chellam P, Verma A, et al. A comparative study on the performance of microbial fuel cell for the treatment of reactive orange 16 dye using mixed and pure bacterial species and its optimization using response surface methodology. Sustain Energy Technol Assessments. 2021;48:101667. doi:10.1016/j.seta.2021.101667.
  • Ross PJ. Taguchi techniques for quality engineering. Singapore: McGraw Hill Professional; 1996.
  • Aslan N. Ünal I. multi-response optimization of oil agglomeration with multiple performance characteristics. Fuel Process Technol. 2011;92:1157–1163. doi:10.1016/j.fuproc.2010.05.029.
  • Wang H, Wang J, Bo G, et al. Degradation of pollutants in polluted river water using Ti/IrO2–Ta2O5 coating electrode and evaluation of electrode characteristics. J Clean Prod. 2020;273:123019. doi:10.1016/j.jclepro.2020.123019.
  • Koók L, Nemestóthy N, Bélafi-Bakó K, et al. The influential role of external electrical load in microbial fuel cells and related improvement strategies: A review. Bioelectrochemistry. 2021;140:107749. doi:10.1016/j.bioelechem.2021.107749.
  • Neseli S, Dincer K, Sakir T, et al. Optimization of electricity generation parameters with microbial fuel cell using the response surface method. Arab J Sci Eng. 2022;47:15705–15725. doi:10.1007/s13369-022-06659-y.
  • Singh R, Bhunia P, Dash RR. Optimization of organics removal and understanding the impact of HRT on vermifiltration of brewery wastewater. Sci Total Environ. 2019;651:1283–1293. doi:10.1016/j.scitotenv.2018.09.307.
  • Rostamiyan Y, Fereidoon A, Mashhadzadeh AH, et al. Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite. Compos Part B Eng. 2015;69:304–316. doi:10.1016/j.compositesb.2014.09.031.
  • Zinatizadeh AAL, Mohamed AR, Abdullah AZ, et al. Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water Res. 2006;40:3193–3208. doi:10.1016/j.watres.2006.07.005.
  • Arslan-Alaton I, Tureli G, Olmez-Hanci T. Treatment of azo dye production wastewaters using photo-fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A Chem. 2009;202:142–153. doi:10.1016/j.jphotochem.2008.11.019.
  • Yusoff M, Hu MZ, Feng A, et al. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresour Technol. 2013;145:90–96. doi:10.1016/j.biortech.2013.03.003.
  • Jayashree C, Janshi G, Yeom IT, et al. Effect of Low temperature thermo-chemical pretreatment of dairy waste activated sludge on the performance of microbial fuel cell. Int J Electrochem Sci. 2014;9:5732–5742.
  • Boateng ID, Yang XM, Li YY. Optimization of infrared-drying parameters for Ginkgo biloba L. seed and evaluation of product quality and bioactivity. Ind Crops Prod. 2021;160:113108. doi:10.1016/j.indcrop.2020.113108.
  • Abdulredha MM, Hussain SA, Abdullah LC. Separation emulsion via Non-ionic surfactant: An optimization. Processes. 2019;7:382. doi:10.3390/pr7060382.
  • Chae KJ, Choi MJ, Kim KY, et al. Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresour Technol. 2010;101:5350–5357. doi:10.1016/j.biortech.2010.02.035.
  • Kim KJ, Lee SW, Yim T, et al. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries. Sci Reports. 2014;4:1–6. doi:10.1038/srep06906.
  • Oon Y-SY-LLS, Ong S-AA, Ho L-NN, et al. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation. J Hazard Mater. 2017;325:170–177. doi:10.1016/j.jhazmat.2016.11.074.
  • Xiao B, Han Y, Liu X, et al. Relationship of methane and electricity production in two-chamber microbial fuel cell using sewage sludge as substrate. Int J Hydrogen Energy. 2014;39:16419–16425. doi:10.1016/j.ijhydene.2014.08.024.
  • López Zavala MÁ, Peña OIG, Ruelas HC, et al. Use of cyclic voltammetry to describe the electrochemical behavior of a dual-chamber microbial fuel cell. Energies. 2019;12(18):3532. doi:10.3390/en12183532.
  • Danish Khan M, Abdulateif H, Ismail IM, et al. Bioelectricity generation and bioremediation of an Azo-Dye in a microbial fuel cell coupled activated sludge process. PLoS One. 2015;10:e0138448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.