125
Views
0
CrossRef citations to date
0
Altmetric
Articles

Production and purification of fucoxanthins and β-carotenes from Halopteris scoparia and their effects on digestive enzymes and harmful bacteria

, , , , &
Pages 2923-2934 | Received 27 Oct 2022, Accepted 27 Feb 2023, Published online: 05 Apr 2023

References

  • Mannan A, Rupa BA, Azam NK, et al. A quick review on anti-diabetic plants and action of phytochemicals. Int J Adv Res. 2014;2:227.
  • Abuyassin B, Laher I. Diabetes epidemic sweeping the Arab world. World J Diabetes. 2016;7:165–174. doi:10.4239/wjd.v7.i8.165.
  • Abu-Odeh AM, Talib WH. Middle East medicinal plants in the treatment of diabetes: a review. Molecules. 2021;26:742. doi:10.3390/molecules26030742.
  • Cherif I, Rejaibi S, Mansour NB, et al. Oral presentations: diabetes control and stroke care. Eur J Public Health. 2021;3:125–126.
  • Andrade-Cetto A, Heinrich M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol. 2005;99:325–348. doi:10.1016/j.jep.2005.04.019.
  • Sathasivampillai SV, Rajamanoharan PRS, Munday M, et al. Plants used to treat diabetes in Sri Lankan siddha medicine, an ethnopharmacological review of historical and modern sources. J Ethnopharmacol. 2017;198:531–599. doi:10.1016/j.jep.2016.07.053.
  • Gunathilaka TL, Samarakoon K, Ranasinghe P, et al. Antidiabetic potential of marine brown algae - a mini review. J Diabetes Res. 2020;2020:1230218. doi:10.1155/2020/1230218.
  • Lee SH, Jeon YJ. Anti-diabetic effects of brown algae-derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia. 2013;86:129–136. doi:10.1016/j.fitote.2013.02.013.
  • Chauhan A, Sharma P, Srivastava P, et al. Plants having potential antidiabetic activity: A review. Der. Pharm. Lett. 2010;2:369–387.
  • Bhushan MS, Rao CHV, Ojha SK, et al. An analytical review of plants for anti-diabetic activity with their phytoconstituent & mechanism of action. Int J Pharm Sci Res. 2010;1:29–46.
  • Afonso NC, Catarino MD, Silva AMS, et al. Brown macroalgae as valuable food ingredients. Antioxidants. 2019;8:365. doi:10.3390/antiox8090365.
  • Novoveská L, Ross ME, Stanley MS, et al. Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Mar Drugs. 2019;17:640. doi:10.3390/md17110640.
  • Marcelino G, Machate DJ, Freitas K, et al. β-Carotene: preventive role for type 2 diabetes mellitus and obesity: a review. Molecules. 2020;25:5803. doi:10.3390/molecules25245803.
  • Bae M, Kim MB, Park Y-K, et al. Health benefits of fucoxanthin in the prevention of chronic diseases. BBA Mol Cell Bio Lipids. 2020;11:1865. doi:10.1016/j.bbalip.2020.158618.
  • Khaw YS, Yusoff FM, Tan HT, et al. The critical studies of fucoxanthin research trends from 1928 to june 2021: a bibliometric review. Mar Drugs. 2021;19:606. doi:10.3390/md19110606.
  • Leong YK, Chen CY, Varjani S, et al. Producing fucoxanthin from algae—recent advances in cultivation strategies and downstream processing. Bioresour Technol. 2022;344:126170. doi:10.1016/j.biortech.2021.126170.
  • Xiao H, Zhao J, Fang C, et al. Advances in studies on the pharmacological activities of fucoxanthin. Mar Drugs. 2020;18:634. doi:10.3390/md18120634.
  • Bogacz-Radomska L, Harasym J., β-Carotene properties and production methods. Food Qual Saf. 2018;2:69–74. doi:10.1093/fqsafe/fyy004.
  • Johra FT, Bepari AK, Bristy AT, et al. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants. 2020;9:1046. doi:10.3390/antiox9111046.
  • Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, et al. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol. 2021;117:163–181. doi:10.1016/j.tifs.2021.03.012.
  • Cristina Oliveira de Lima V, Piuvezam G, Leal Lima Maciel B, et al. Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders. J Enzyme Inhib Med Chem. 2019;34:405–419. doi:10.1080/14756366.2018.1542387.
  • Ihse I, Lundquist I, Arnesjö B. Oral trypsin-inhibitor-induced improvement of the exocrine and endocrine pancreatic functions in alloxan diabetic rats. Scand J Gastroenterol. 1976;11:363–368. doi:10.1080/00365521.1976.12097119.
  • Karpiński TM, Ożarowski M, Alam R, et al. What do we know about antimicrobial activity of astaxanthin and fucoxanthin. Mar Drugs. 2021;20:36. doi:10.3390/md20010036.
  • Gutiérrez-Del-Río I, Fernández J, Lombó F. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols. Int J Antimicrob Agents. 2018;52:309–315. doi:10.1016/j.ijantimicag.2018.04.024.
  • Seukep AJ, Kuete V, Nahar L, et al. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J Pharm Anal. 2020;10:277–290. doi:10.1016/j.jpha.2019.11.002.
  • Hentati F, Delattre C, Gardarin C, et al. Structural features and rheological properties of a sulfated xylogalactan-rich fraction isolated from Tunisian red seaweed Jania adhaerens. Appl Sci. 2020;10:1655. doi:10.3390/app10051655.
  • Kawee-Ai A, Kim AT, Kim SM. Inhibitory activities of microalgal fucoxanthin against α-amylase, α-glucosidase, and glucose oxidase in 3T3-L1 cells linked to type 2 diabetes. J Oceanolo Limnol. 2019;37:928–937. doi:10.1007/s00343-019-8098-9.
  • Wang S, Wei X, Zhou J, et al. Identification of α 2 macroglobulin (A2M) as a master inhibitor of cartilage degrading factors that attenuates the progression of post-traumatic osteoarthritis. Arthritis Rheumatol. 2014;66:1843–1853. doi:10.1002/art.38576.
  • Fung A, Hamid N, Lu J. Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chem. 2013;136:1055–1062. doi:10.1016/j.foodchem.2012.09.024.
  • Bernfeld P. Amylases, α and β. In: Methods in enzymology (Vol. 1). Elsevier; (1955). p. 149–158. doi:10.1016/0076-6879(55)01021-5.
  • Choudhary DK, Mishra A. In vitro and in silico interaction of porcine α-amylase with Vicia faba crude seed extract and evaluation of antidiabetic activity. Bioengineered. 2017;8:393–403. doi:10.1080/21655979.2016.1235102.
  • Kunitz M. Crystalline soybean trypsin inhibitor: II. General properties. J Gen Physiol. 1947;30:291–310. doi:10.1085/jgp.30.4.291.
  • Elleuch J, HadjKacem F, Ben Amor F, et al. Extracellular neutral protease from Arthrospira platensis: production, optimization and partial characterization. Int J Bio Macromol. 2021;167:1491–1498. doi:10.1016/j.ijbiomac.2020.11.102.
  • Abdelkafi S, Chamkha M, Casalot L, et al. Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett. 2005;252:79–84. doi:10.1016/j.femsle.2005.08.032.
  • Elleuch J, Zghal RZ, Ben Fguira I, et al. Effects of the P20 protein from Bacillus thuringiensis israelensis on insecticidal crystal protein Cry4Ba. Int J Bio Macromol. 2015;79:174–179. doi:10.1016/j.ijbiomac.2015.04.035.
  • Abdelkafi S, Labat M, Ben Ali Gam Z, et al. Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongata DSM 2581 T resting cells. World J Microbiol Biotechnol. 2008;24:675–680. doi:10.1007/s11274-007-9523-3.
  • Chandrasekaran M, Venkatesalu V. Antibacterial and antifungal activity of Syzygium jambolanum seeds. J Ethnopharmacol. 2004;91:105–108. doi:10.1016/j.jep.2003.12.012.
  • Jaswir I, Noviendri D, Salleh HM, et al. Fucoxanthin extractions of brown seaweeds and analysis of their lipid fraction in methanol. Food Sci Technol Res. 2012;18:251–257. doi:10.3136/fstr.18.251.
  • Méresse S, Fodil M, Fleury F, et al. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: a promising bioactive compound for cancer therapy. Int J Mol Sci. 2020;21:9273. doi:10.3390/ijms21239273.
  • Pajot A, Hao Huynh G, Picot L, et al. Fucoxanthin from algae to human, an extraordinary bioresource: insights and advances in up and downstream processes. Mar Drugs. 2022;20:222. doi:10.3390/md20040222.
  • Perez E, Ruiz-Dominguez MC, Morales Espinoza J, et al. Fucoxanthin from marine microalga Isochrysis galbana: optimization of extraction methods with organic solvents. Dyna. 2019;86:174–178. doi:10.15446/dyna.v86n210.72932.
  • Ortiz J, Uquiche E, Robert P, et al. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur J Lipid Sci Technol. 2009;111:320–327. doi:10.1002/ejlt.200800140.
  • Qiu S, Shen Y, Wu Z, et al. Effects of algae subtype and extraction condition on extracted fucoxanthin antioxidant property: a 20-year meta-analysis. Algal Res. 2021;53:102161. doi:10.1016/j.algal.2020.102161.
  • Sun P, Wong CC, Li Y, et al. A novel strategy for isolation and purification of fucoxanthinol and fucoxanthin from the diatom Nitzschia laevis. Food Chem. 2019;277:566–572. doi:10.1016/j.foodchem.2018.10.133.
  • Kusmita L, Puspitaningrum I, Limantara L. Identification, isolation and antioxidant activity of pheophytin from green tea (Camellia Sinensis (L.) Kuntze). Procedia Chem. 2015;14:232–238. doi:10.1016/j.proche.2015.03.033.
  • Maeda H, Hosokawa M, Sashima T, et al. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun. 2005;332:392–397. doi:10.1016/j.bbrc.2005.05.002.
  • Jaswir I, Noviendri D, Salleh HM, et al. Analysis of fucoxanthin content and purification of all-trans-fucoxanthin from Turbinaria turbinata and Sargassum plagyophyllum by SiO2 open column chromatography and reversed phase-hplc. J Liq Chromatogr Relat Technol. 2013;36:1340–1354. doi:10.1080/10826076.2012.691435.
  • Rajauria G, Abu-Ghannam N. Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: A TLC-based approach. Int J Anal Chem. 2013: 802573. doi:10.1155/2013/802573.
  • Ambarwati NSS, Armandari MO, Widayat W, et al. In vitro studies on the cytotoxicity, elastase, and tyrosinase inhibitory activities of tomato (Solanum lycopersicum Mill.) extract. J Adv Pharm Technol Res. 2022;13:182–186. doi:10.4103/japtr.japtr_49_22.
  • Liaaen-Jensen S, Jensen A. Quantitative determination of carotenoids in photosynthetic tissues. In: Methods in enzymology (Vol. 23). Elsevier; (1971). p. 586–602. doi:10.1016/S0076-6879(71)23132-3.
  • Foo SC, Yusoff FM, Ismail M, et al. HPLC fucoxanthin profiles of a microalga, a macroalga and a pure fucoxanthin standard. Data Brief. 2017;10:583–586. doi:10.1016/j.dib.2016.12.047.
  • Gebregziabher BS, Zhang S, Qi J, et al. Simultaneous determination of carotenoids and chlorophylls by the HPLC-UV-VIS method in soybean seeds. Agron J. 2021;11:758. doi:10.3390/agronomy11040758.
  • Takaichi S. Characterization of carotenes in a combination of a C18 HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynth Res. 2000;65:93–99. doi:10.1023/A:1006445503030.
  • Kraay GW, Zapata M, Veldhuis MJW. Separation of chlorophylls c1c2, and c3 of marine phytoplankton by reversed-phase-c18-high-performance liquid chromatography1. J Phycol. 1992;28:708–712. doi:10.1111/j.0022-3646.1992.00708.x.
  • Sharifuddin Y, Chin YX, Lim PE, et al. Potential bioactive compounds from seaweed for diabetes management. Mar Drugs. 2015;13:5447–5491. doi:10.3390/md13085447.
  • Hwang PA, Hung YL, Tsai YK, et al. The brown seaweed Sargassum hemiphyllum exhibits α-amylase and α-glucosidase inhibitory activity and enhances insulin release in vitro. Cytotechnology. 2015;67:653–660. doi:10.1007/s10616-014-9745-9.
  • Yusuf E, Wojdyło A, Oszmiański J, et al. Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods. 2021;10:808. doi:10.3390/foods10040808.
  • Conforti F, Statti G, Loizzo MR, et al. In vitro antioxidant effect and inhibition of alpha-amylase of two varieties of Amaranthus caudatus seeds. Bio Pharm Bull. 2005;28:1098–1102. doi:10.1248/bpb.28.1098.
  • Sales PM, Souza PM, Simeoni LA, et al. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J Pharm Pharm Sci. 2012;15:141–183. doi:10.18433/j35s3k.
  • Cudina I, Jovanović SV. Free radical inactivation of trypsin. Int J Radiat Part C Radiat; Phys Chem. 1988;32:497–501. doi:10.1016/1359-0197(88)90055-0.
  • Abou-Dobara MADMI. Antibacterial activity of some marine algal extracts against most nosocomial bacterial infections. Egypt J Bot. 2013;9:281–286.
  • Karpiński TM, Adamczak A. Fucoxanthin-an antibacterial carotenoid. Antioxidants. 2019;8:E239. doi:10.3390/antiox8080239.
  • Abdulhadi S, Gergees R, Hasan G. Molecular identification, antioxidant efficacy of phenolic compounds, and antimicrobial activity of β-carotene isolated from fruiting bodies of Suillus sp. Karbala J Mod Sci. 2020;6. doi:10.33640/2405-609X.1966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.