183
Views
0
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic reduction of Cr(VI) using newly synthesized black phosphorus/ZnO nanocomposites

, , , , &
Pages 3396-3404 | Received 14 Oct 2022, Accepted 18 Feb 2023, Published online: 25 May 2023

References

  • Cheng H, Liu Y, Li X. Adsorption performance and mechanism of iron-loaded biochar to methyl orange in the presence of Cr6+ from dye wastewater. J Hazard Mater. 2021;415:125749. doi:10.1016/j.jhazmat.2021.125749.
  • Escudero-Castejón L, Taylor J, Sánchez-Segado S, et al. A novel reductive alkali roasting of chromite ores for carcinogen-free Cr6+-ion extraction of chromium oxide (Cr2O3) – a clean route to chromium product manufacturing!. J Hazard Mater. 2021;403:123589. doi:10.1016/j.jhazmat.2020.123589.
  • Yang X, Zhao Z, Nguyen BV, et al. Cr(VI) bioremediation by active algal-bacterial aerobic granular sludge: importance of microbial viability, contribution of microalgae and fractionation of loaded Cr. J Hazard Mater. 2021;418:126342. doi:10.1016/j.jhazmat.2021.126342.
  • Mallik AK, Moktadir MA, Rahman MA, et al. Progress in surface-modified silicas for Cr(VI) adsorption: a review. J. Hazard. Mater. 2022;423:127041. doi:10.1016/j.jhazmat.2021.127041.
  • Zhou G, Wu Y, Wang P, et al. S-scheme carrier kinetic pathway constructed by covalent-anion channels in self-assembled cadmium/rhenium sulfide hybrids for efficient Cr(VI) reduction. J Clean Prod. 2021;314:127980. doi:10.1016/j.jclepro.2021.127980.
  • Liu C, Wang P, Qiao Y, et al. Self-assembled Bi2SeO5/rGO/MIL-88A Z-scheme heterojunction boosting carrier separation for simultaneous removal of Cr (VI) and chloramphenicol. Chem Eng J. 2022;431:133289. doi:10.1016/j.cej.2021.133289.
  • Wang M, Jin C, Kang J, et al. Cuo/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: characterization, efficiency and mechanism. Chem Eng J. 2021;416:128118. doi:10.1016/j.cej.2020.128118.
  • Ai L, Wang L, Xu M, et al. Defective Bi.333(Bi6S9)Br/Bi2S3 heterostructure nanorods: boosting the activity for efficient visible-light photocatalytic Cr(VI) reduction. Appl Catal B Environ. 2021;284:119730. doi:10.1016/j.apcatb.2020.119730.
  • Zhou G, Wu Q, Wu L, et al. Reaction kinetic acceleration induced by atomic-hybridized channels in carbon quantum dot/ReS2 composites for efficient Cr(VI) reduction. Appl Catal B Environ. 2022;300:119807. doi:10.1016/j.apcatb.2020.119807.
  • Wang P, Liu C, Liu Y, et al. Photothermal-driven itinerant adsorption to accelerate self-repairing of reactive sites for efficient removal of salicylic acid. Purif Technol. 2022;284:120251. doi:10.1016/j.seppur.2021.120251.
  • Chen R, Luo F, Liu Y, et al. Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO. Commun. 2021;12:3952. doi:10.1038/s41467-021-24247-w.
  • Peng B, Lu Y, Luo J, et al. Visible light-activated self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection based on DFT-proved Z-scheme Ag2CrO4/g-C3N4/graphene oxide. J Hazard Mater. 2021. doi:10.1016/j.jhazmat.2020.123395.
  • Zhu Y, Fang W, Rubio A, et al. The twist angle has weak influence on charge separation and strong influence on recombination in the MoS2/WS2bilayer: ab initio quantum dynamics. J Mater Chem A. 2022.
  • Polo A, Nomellini C, Grigioni I, et al. Effective visible light exploitation by copper molybdo-tungstate photoanodes. Energy Mater. 2020;3:6956–6964. doi:10.1021/acsaem.0c01021.
  • Mohan H, Ramalingam V, Adithan A, et al. Highly efficient visible light driven photocatalytic activity of zinc/ferrite: carbamazepine degradation, mechanism and toxicity assessment. J Hazard Mater. 2021;416:126209. doi:10.1016/j.jhazmat.2021.126209.
  • Tang J, Wang J, Tang L, et al. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation. Chem Eng J. 2022;430:132669. doi:10.1016/j.cej.2021.132669.
  • Zhou G, Wang P, Li H, et al. Bimetallic-atom-hybridization-driven catalytic reaction kinetics and solar utilization to accelerate norfloxacin degradation. Appl Catal B Environ. 2021;298:120525. doi:10.1016/j.apcatb.2021.120525.
  • Wei K, Li K, Yan L, et al. One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems. Appl Catal B Environ. 2018;222:88–98. doi:10.1016/j.apcatb.2017.09.070.
  • Zhu X, Huang S, Yu Q, et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl Catal B Environ. 2020;269:118760. doi:10.1016/j.apcatb.2020.118760.
  • Zhou Y, Yu M, Liang H, et al. Novel dual-effective Z-scheme heterojunction with g-C3N4, Ti3C2 MXene and black phosphorus for improving visible light-induced degradation of ciprofloxacin. Appl Catal B Environ. 2021;291:120105. doi:10.1016/j.apcatb.2021.120105.
  • Li Z, Li H, Wang S, et al. Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production. Chem Eng J. 2022;427:131830. doi:10.1016/j.cej.2021.131830.
  • Luo S, Liu R, Zhang X, et al. Mechanism investigation for ultra-efficient photocatalytic water disinfection based on rational design of indirect Z-scheme heterojunction black phosphorus QDs/Cu2O nanoparticles. J Hazard Mater. 2022;424:127281. doi:10.1016/j.jhazmat.2021.127281.
  • Fu M, Dan M, Hu G, et al. Polarization-induced ultrahigh Rashba spin-orbit interaction in ZnO/CdO quantum well. Nano Energy. 2021;88:106310. doi:10.1016/j.nanoen.2021.106310.
  • Laurenti M, Garino N, Canavese G, et al. Piezo- and photocatalytic activity of ferroelectric ZnO:Sb thin films for the efficient degradation of rhodamine-β dye pollutant. ACS Appl Mater Interfaces. 2020;12:25798–25808. doi:10.1021/acsami.0c03787.
  • Djellabi R, Su P, Elimian EA, et al. Advances in photocatalytic reduction of hexavalent chromium: from fundamental concepts to materials design and technology challenges. Water Proc Eng. 2022;50:103301. doi:10.1016/j.jwpe.2022.103301.
  • Djellabi R, Ghorab FM, Nouacer S, et al. Cr(VI) photocatalytic reduction under sunlight followed by Cr(III) extraction from TiO2 surface. Lett. 2016;176:106–109. doi:10.1016/j.matlet.2016.04.090.
  • Verma S, Younis SA, Kim KH, et al. Anisotropic ZnO nanostructures and their nanocomposites as an advanced platform for photocatalytic remediation. J Hazard Mater. 2021;415:125651. doi:10.1016/j.jhazmat.2021.125651.
  • Fu Y, Ren Z, Wu J, et al. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. Appl Catal B Environ. 2021;285:119785. doi:10.1016/j.apcatb.2020.119785.
  • Villafuerte J, Sarigiannidou E, Donatini F, et al. Modulating the growth of chemically deposited ZnO nanowires and the formation of nitrogen- and hydrogen-related defects using the pH adjustment. Nanoscale Adv. 2022. doi:10.1039/D1NA00785H.
  • Deng H, Fei X, Yang Y, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem Eng J. 2021;409:127377. doi:10.1016/j.cej.2020.127377.
  • Kim D, Yong K. Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Appl Catal B Environ. 2021;282:119538. doi:10.1016/j.apcatb.2020.119538.
  • Gao F, Yuan J, Huang X, et al. Directional transfer of photo-generated charges mediated by cascaded dual defects in ternary photocatalyst ZnS/ZnO-In2O3 with enhanced photocatalytic performance. Chem Eng J. 2021;416:129159. doi:10.1016/j.cej.2021.129159.
  • Li J, Liu L, Liang Q, et al. Core-shell ZIF-8@MIL-68(In) derived ZnO nanoparticles-embedded In2O3 hollow tubular with oxygen vacancy for photocatalytic degradation of antibiotic pollutant. J Hazard Mater. 2021;414:125395. doi:10.1016/j.jhazmat.2021.125395.
  • Li Y, Zhao H, Chen S, et al. Phosphorus-doped activated carbon catalyst for n-hexane dehydroaromatization reaction. Commun. 2021;156:106318. doi:10.1016/j.catcom.2021.106318.
  • Xiong Y, Yang X, Liu Y, et al. Fabrication of phosphorus doping porous carbon derived from bagasse for highly-efficient removal of La3+ ions via capacitive deionization. Electrochim Acta. 2022;404:139735. doi:10.1016/j.electacta.2021.139735.
  • Zhou G, Wang P, Li H, et al. Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Commun. 2021;12:4827. doi:10.1038/s41467-021-25095-4.
  • Shen C-H, Chen Y, Xu X-J, et al. Efficient photocatalytic H2 evolution and Cr(VI) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts. J Hazard Mater. 2021;416:126217. doi:10.1016/j.jhazmat.2021.126217.
  • Elbanna O, Zhu M, Fujitsuka M, et al. Black phosphorus sensitized TiO2mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation. ACS Catal. 2019;9:3618–3626. doi:10.1021/acscatal.8b05081.
  • Li X, He W, Li C, et al. Synergetic surface modulation of ZnO/Pt@ZIF-8 hybrid nanorods for enhanced photocatalytic CO2 valorization. Appl Catal B Environ. 2021;287:119934. doi:10.1016/j.apcatb.2021.119934.
  • Bi Q, Hu K, Chen J, et al. Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction. Appl Catal B Environ. 2021;295:120211. doi:10.1016/j.apcatb.2021.120211.
  • Wei Y, Wang L, Chen C. Yttrium doping enhances the photoelectrochemical water splitting performance of ZnO nanorod array films. Alloys Compd. 2022;896:163144. doi:10.1016/j.jallcom.2021.163144.
  • Bortolotto V, Djellabi R, Giordana A, et al. Photocatalytic behaviour of Ag3PO4, Fe3O4 and Ag3PO4/Fe3O4 heterojunction towards the removal of organic pollutants and Cr(VI) from water: efficiency and light-corrosion deactivation. Chem Commun. 2022;141:109516. doi:10.1016/j.inoche.2022.109516.
  • Abderrahim N, Djellabi R, Amor HB, et al. Sustainable purification of phosphoric acid contaminated with Cr(VI) by Ag/Ag3PO4 coated activated carbon/montmorillonite under UV and solar light: materials design and photocatalytic mechanism. Mater Des Photocatal Mech J Environ Chem Eng. 2022;10:107870. doi:10.1016/j.jece.2022.107870.
  • Djellabi R, Ali J, Yang B, et al. Synthesis of magnetic recoverable electron-rich TCTA@PVP based conjugated polymer for photocatalytic water remediation and disinfection. Purif Technol. 2020;250:116954. doi:10.1016/j.seppur.2020.116954.
  • Djellabi R, Zhao X, Ordonez MF, et al. Comparison of the photoactivity of several semiconductor oxides in floating aerogel and suspension systems towards the reduction of Cr(VI) under visible light. Chemosphere. 2021;281:130839. doi:10.1016/j.chemosphere.2021.130839.
  • Djellabi R, Zhao X, Bianchi CL, et al. Visible light responsive photoactive polymer supported on carbonaceous biomass for photocatalytic water remediation. J Clean Prod. 2020;269:122286. doi:10.1016/j.jclepro.2020.122286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.