149
Views
0
CrossRef citations to date
0
Altmetric
Articles

Biosorption process using Cereus jamacaru DC, Cactaceae for Pb2+ removal from aqueous systems

, , , , & ORCID Icon
Pages 3428-3438 | Received 19 Sep 2022, Accepted 11 May 2023, Published online: 30 May 2023

References

  • Rajendran S, Priya TAK, Khoo KS, et al. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere. 2022;287:132369, doi:10.1016/j.chemosphere.2021.132369.
  • Soliman NK, Moustafa AF. Industrial solid waste for heavy metals adsorption features and challenges: a review. J Mater Res Technol. 2020;9(5):10235–10253. doi:10.1016/j.jmrt.2020.07.045.
  • Lalhruaitluanga H, Jayaram K, Prasad MNV, et al. Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera roxburgh (bamboo)—a comparative study. J Hazard Mater. 2010;175(1–3):311–318. doi:10.1016/j.jhazmat.2009.10.005.
  • Ahmed SF, Mofijur M, Nuzhat S, et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J Hazard Mater. 2021;416:125912, doi:10.1016/j.jhazmat.2021.125912.
  • Haidari AH, Gonzalez-Olmos R, Heijman SGJ. Scaling after remineralisation of reverse osmosis permeate. Desalination. 2019;467:57–63. doi:10.1016/j.desal.2019.06.002.
  • Malik LA, Bashir A, Qureashi A, et al. Detection and removal of heavy metal ions: a review. Environ Chem Lett. 2019;17(4):1495–1521. doi:10.1007/s10311-019-00891-z.
  • Li X, Wang Z, Liang H, et al. Chitosan modification persimmon tannin bioadsorbent for highly efficient removal of Pb (II) from aqueous environment: the adsorption equilibrium, kinetics and thermodynamics. Environ Technol. 2019;40(1):112–124. doi:10.1080/09593330.2017.1380712.
  • Dantas SC, Teixeira GF, Ferrari JG, et al. Adsorção do corante verde de malaquita utilizando casca de banana e sabugo de milho como adsorvente. Rev Brasil Ciên Tecnol Inov. 2021;5(2):124, doi:10.18554/rbcti.v5i2.3839.
  • Tavares FO, Pinto LAM, Bassetti FJ, et al. Environmentally friendly biosorbents (husks, pods and seeds) from moringa oleifera for Pb (II) removal from contaminated water. Environ Technol. 2017;38(24):3145–3155. doi:10.1080/09593330.2017.1290150.
  • Barka N, Abdennouri M, El Makhfouk M, et al. Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J Environ Chem Eng. 2013;1(3):144–149. doi:10.1016/j.jece.2013.04.008.
  • Çelebi H, Gök G, Gök O. Adsorption capability of brewed tea waste in waters containing toxic lead (II), cadmium (II), nickel (II), and zinc (II) heavy metal ions. Sci Rep. 2020;10(1):17570), doi:10.1038/s41598-020-74553-4.
  • Nathan RJ, Barr D, Rosengren RJ. Six fruit and vegetable peel beads for the simultaneous removal of heavy metals by biosorption. Environ Technol. 2020: 1–18.
  • Jaihan W, Mohdee V, Sanongraj S, et al. Biosorption of lead (II) from aqueous solution using cellulose-based Bio-adsorbents prepared from unripe papaya (carica papaya) peel waste: removal efficiency, thermodynamics, kinetics and isotherm analysis. Arab J Chem. 2022;15(7):103883, doi:10.1016/j.arabjc.2022.103883.
  • Zhou Z, Xu Z, Feng Q, et al. Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar. J Cleaner Prod. 2018;187:996–1005. doi:10.1016/j.jclepro.2018.03.268.
  • de Sousa Vieira LC, de Paula Silva Filho V, Satyamurty P, et al. Simulation of air temperature and their influence on the potential distribution of Myracrodruon urundeuva, Copernicia prunifera and Cereus jamacaru in the caatinga. SN Appl Sci. 2022;4(1):26, doi:10.1007/s42452-021-04886-w.
  • de Medeiros IU, de Medeiros RA, Bortolin RH, et al. Genotoxicity and pharmacokinetic characterization of Cereus jamacaru ethanolic extract in rats. Biosci Rep. 2019;39(1):1–11. doi:10.1042/BSR20180672.
  • Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-Dye binding. Anal Biochem. 1976;72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Dubois M., et al. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350–356. doi:10.1021/ac60111a017.
  • Singleton L, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999;299:152–178. doi:10.1016/S0076-6879(99)99017-1.
  • Morais DSC. Avaliação das atividades antioxidantes e citotóxicas de extratos ricos em polissacarídeos extraídos das hastes do Mandacaru (Cereus jamacaru de Candolle, Cactaceae). Dissertação de Mestrado—Natal: UFRN, 2013.
  • Soares LMN, Silva GM, Alonso Buriti FC, et al. Cereus jamacaru D.C. (mandacaru): a promising native Brazilian fruit as a source of nutrients and bioactives derived from its pulp and skin. Plant Foods Hum Nutr. 2021;76(2):170–178. doi:10.1007/s11130-021-00885-9.
  • Nessner Kavamura V, Taketani RG, Lançoni MD, et al. Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian caatinga biome. PLoS ONE. 2013;8(9):e73606, doi:10.1371/journal.pone.0073606.
  • Korzeniowska K, Łęska B, Wieczorek PP. Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Res. 2020;48(1):101912, doi:10.1016/j.algal.2020.101912.
  • Gobbo-Neto L, Lopes NP. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova. 2007;30(2):374–381. doi:10.1590/S0100-40422007000200026.
  • Dos Anjos RB, et al. Study of mandacaru (Cereus jamacaru DC), in natura and modified by microemulsion, as a biosorbent for diesel oil. Acta Sci Technol. 2020;43:e49874.
  • Boni HT, de Oliveira D, Ulson de Souza AA, et al. Bioadsorption by sugarcane bagasse for the reduction in oil and grease content in aqueous effluent. Int J Environ Sci Technol. 2016;13(4):1169–1176. doi:10.1007/s13762-016-0962-y.
  • Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–1788. doi:10.1016/j.fuel.2006.12.013.
  • Rosa GM. Análise química e atividade antioxidante de quatro amostras de café (coffea arabica) comerciais. Dissertação de Mestrado—Urbelândia: UFU, 2010.
  • Davet A, Carvalho JLS, Dadalt RC, et al. Cereus jamacaru: a non-buffered LC quantification method to nitrogen compounds. Chromatographia. 2009;69(S2):245–247. doi:10.1365/s10337-009-1130-z.
  • Deng L, Su Y, Su H, et al. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater. 2007;143(1–2):220–225. doi:10.1016/j.jhazmat.2006.09.009.
  • Derbe T, Dargo H, Batu W. Cactus potential in heavy metal (Pb and Cd) removal in water sample collected from rural area around adigrat town. 2015;7(3):84–93.
  • Box GEP, Wetz J. Criteria for judging adequacy of estimation by an approximate response function. University of Wisconsin Technical Report, no. 9, 1973.
  • Neto BB. Como fazer experimento: pesquisa e desenvolvimento na ciência e na indústria. 4. ed Campinas (SP): Bookman; 2010.
  • Anwar J, Shafique U, Salman M, et al. Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana. Bioresour Technol. 2010;101(6):1752–1755. doi:10.1016/j.biortech.2009.10.021.
  • Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, et al. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ Technol Innov. 2021;22:101504, doi:10.1016/j.eti.2021.101504.
  • Nharingo T, Zivurawa MT, Guyo U. Exploring the use of cactus opuntia ficus indica in the biocoagulation–flocculation of Pb (II) ions from wastewaters. Int J Environ Sci Technol. 2015;12(12):3791–3802. doi:10.1007/s13762-015-0815-0.
  • Chen M, Wang X, Zhang H. Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: highly-efficient performance, application and mechanism. J Environ Manag. 2021;288:112388, doi:10.1016/j.jenvman.2021.112388.
  • Choi HY, Bae JH, Hasegawa Y, et al. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr Polym. 2020;234:115881, doi:10.1016/j.carbpol.2020.115881.
  • Mwandira W, Nakashima K, Kawasaki S, et al. Biosorption of Pb (II) and Zn (II) from aqueous solution by oceanobacillus profundus isolated from an abandoned mine. Sci Rep. 2020;10(1):21189, doi:10.1038/s41598-020-78187-4.
  • Villaescusa I, Fiol N, Martı́nez M, et al. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 2004;38(4):992–1002. doi:10.1016/j.watres.2003.10.040.
  • Fu Q, Tan X, Ye S, et al. Mechanism analysis of heavy metal lead captured by natural-aged microplastics. Chemosphere. 2021;270:128624, doi:10.1016/j.chemosphere.2020.128624.
  • Mataka LM, Henry EMT, Masamba WRL, et al. Lead remediation of contaminated water using moringa stenopetala and moringa oleifera seed powder. Int J Environ Sci Technol. 2006;3(2):131–139. doi:10.1007/BF03325916.
  • Rashid A, Bhatti HN, Iqbal M, et al. Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: a mechanistic study. Ecol Eng. 2016;91:459–471. doi:10.1016/j.ecoleng.2016.03.014.
  • Nascimento PFP. Estudo de metodologias de tratamento do pó da casca do coco para adsorção de Cu2+ e Cd2+. Tese de Doutorado—Natal: UFRN, 2020.
  • Melo DQ, et al. Removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent. J Appl Polym Sci. 2014;131(20).
  • De Oliveira KFS, et al. Cashew nut shell (Anarcadium accidentale L) charcoal as bioadsorbent to remove Cu2+ and Cr3+. Res Soc Dev. 2021;10(2):e0510212238.
  • Ramos SNC, et al. Modeling mono- and multi-component adsorption of cobalt (II), copper (II), and nickel (II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: batch adsorption study. Ind Crops Product 2015;74:357–371.
  • Setyono D, Valiyaveettil S. Functionalized paper—A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water. J Hazard Mater. 2016;302:120–128. doi:10.1016/j.jhazmat.2015.09.046.
  • Politaeva NA, Smyatskaya YA, Tatarintseva EA. Using adsorption material based on the residual biomass of chlorella sorokiniana microalgae for wastewater purification to remove heavy metal ions. Chem Pet Eng. 2020;55(11–12):907–912. doi:10.1007/s10556-020-00712-z.
  • Onditi M, Adelodun AA, Changamu EO, et al. Removal of Pb2+ and Cd2+ from drinking water using polysaccharide extract isolated from cactus pads (Opuntia ficus indica). J Appl Polym Sci. 2016;133(38). doi:10.1002/app.43913
  • Çetintaş S, Bingöl D. Optimization of Pb(II) biosorption with date palm (Phoenix dactylifera L.) seeds using response surface methodology. J Water Chem Technol. 2018;40(6):370–378. doi:10.3103/S1063455X18060103.
  • Rani K, Gomathi T, Vijayalakshmi K. Banana fiber cellulose nano crystals grafted with butyl acrylate for heavy metal lead (II) removal. Int J Biol Macromol. 2019;131:461–472. doi:10.1016/j.ijbiomac.2019.03.064.
  • Mirghaffari N, Moeini E, Farhadian O. Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, scenedesmus quadricauda. J Appl Phycol. 2015;27(1):311–320. doi:10.1007/s10811-014-0345-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.