137
Views
1
CrossRef citations to date
0
Altmetric
Articles

Visible-light-driven TiO2@Fe2O3/Chitosan nanocomposite with promoted photodegradation of meropenem and imipenem antibiotics by peroxymonosulfate

, , , &
Pages 3456-3467 | Received 24 Dec 2022, Accepted 27 Mar 2023, Published online: 30 May 2023

References

  • Choudhary V, Vellingiri K, Thayyil MI, et al. Removal of antibiotics from aqueous solutions by electrocatalytic degradation. Environ Sci Nano. 2021;8:1133–1176. doi:10.1039/D0EN01276A
  • Haghighi M, Kazemi Moghaddam V, Dabbagh Moghaddam A, et al. Optimization of ozonation process for disinfection of dental unit waterlines using response surface methodology. Ozone Sci Eng. 2020;42:54–65. doi:10.1080/01919512.2019.1624150.
  • Reina AC, Martínez-Piernas AB, Bertakis Y, et al. Photochemical degradation of the carbapenem antibiotics imipenem and meropenem in aqueous solutions under solar radiation. Water Res. 2018;128:61–70. doi:10.1016/j.watres.2017.10.047.
  • Dong Q, Yang F, Liang F, et al. Silver particle on BiVO4 nanosheet plasmonic photocatalyst with enhanced photocatalytic oxidation activity of sulfadiazine. J Mol Liq. 2021;331:115751.
  • Haghighi M, Rahmani F, Kariminejad F, et al. Photodegradation of lignin from pulp and paper mill effluent using TiO2/PS composite under UV-LED radiation: optimization, toxicity assessment and reusability study. Process Saf Environ Prot. 2019;122:48–57. doi:10.1016/j.psep.2018.11.020.
  • Khanmohammadi M, Shahrouzi JR, Rahmani F. Insights into mesoporous MCM-41-supported titania decorated with CuO nanoparticles for enhanced photodegradation of tetracycline antibiotic. Environ Sci Pollut Res. 2021;28:862–879. doi:10.1007/s11356-020-10546-0.
  • Davari N, Farhadian M, Nazar ARS, et al. Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: structural and operational comparison. J Environ Chem Eng. 2017;5:5707–5720. doi:10.1016/j.jece.2017.10.052.
  • Sene RA, Moradi G, Sharifnia S, et al. Hydrogen evolution via water splitting using TiO2 nanoparticles immobilized on aluminosilicate mineral: synergistic effect of porous mineral and TiO2 content. Desalin Water Treat. 2020;208:273–286. doi:10.5004/dwt.2020.26403.
  • Abbas N, Shao GN, Haider MS, et al. Sol–gel synthesis of TiO2-Fe2O3 systems: effects of Fe2O3 content and their photocatalytic properties. J Ind Eng Chem. 2016;39:112–120. doi:10.1016/j.jiec.2016.05.015.
  • Ahmed M, El-Katori EE, Gharni ZH. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J Alloys Compd. 2013;553:19–29. doi:10.1016/j.jallcom.2012.10.038.
  • Kohantorabi M, Moussavi G, Oulego P, et al. Radical-based degradation of sulfamethoxazole via UVA/PMS-assisted photocatalysis,: driven by magnetically separable Fe3O4@ CeO2@ BiOI nanospheres. Sep Purif Technol. 2021;267:118665.
  • Bouziani A, Park J, Ozturk A. Synthesis of α-Fe2O3/TiO2 heterogeneous composites by the sol-gel process and their photocatalytic activity. J Photochem Photobiol A. 2020;400:112718.
  • Filippo E, Carlucci C, Capodilupo AL, et al. Facile preparation of TiO2–polyvinyl alcohol hybrid nanoparticles with improved visible light photocatalytic activity. Appl Surf Sci. 2015;331:292–298. doi:10.1016/j.apsusc.2014.12.112.
  • Jaafari J, Barzanouni H, Mazloomi S, et al. Effective adsorptive removal of reactive dyes by magnetic chitosan nanoparticles: kinetic, isothermal studies and response surface methodology. Int J Biol Macromol. 2020;164:344–355. doi:10.1016/j.ijbiomac.2020.07.042.
  • Ghanbari F, Wu J, Khatebasreh M, et al. Efficient treatment for landfill leachate through sequential electrocoagulation, electrooxidation and PMS/UV/CuFe2O4 process. Sep Purif Technol. 2020;242:116828.
  • Akbari S, Moussavi G, Decker J, et al. Superior visible light-mediated catalytic activity of a novel N-doped, Fe3O4-incorporating MgO nanosheet in presence of PMS: imidacloprid degradation and implications on simultaneous bacterial inactivation. Appl Catal B. 2022;317:121732.
  • Kohantorabi M, Moussavi G, Giannakis S. A review of the innovations in metal-and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation: with focus on radical vs. non-radical degradation pathways of organic contaminants. Chem Eng J. 2021;411:127957.
  • Giannakis S, Lin K-YA, Ghanbari F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem Eng J. 2021;406:127083.
  • Yang Q, Ma Y, Chen F, et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem Eng J. 2019;378:122149.
  • Afshin S, Haghighi M, Rashtbari Y, et al. Sono-synthesised algae-based magnetic mesoporous adsorbent for dye adsorption: characterization, reusability and toxicity assessment. Int J Environ Anal Chem. 2021: 1–23. doi:10.1080/03067319.2021.2011255.
  • Ali AM, Sayed MA, Algarni H, et al. Synthesis, characterization and photoelectric properties of Fe2O3 incorporated TiO2 photocatalyst nanocomposites. Catalysts. 2021;11:1062.
  • Rufus A, Sreeju N, Philip D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 2016;6:94206–94217. doi:10.1039/C6RA20240C.
  • Cordero-Arias L, Cabanas-Polo S, Gao H, et al. Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel. RSC Adv. 2013;3:11247–11254. doi:10.1039/c3ra40535d.
  • Haghighi M, Rahmani F, Dehghani R, et al. Photocatalytic reduction of Cr (VI) in aqueous solution over ZnO/HZSM-5 nanocomposite: optimization of ZnO loading and process conditions. Desalin Water Treat. 2017;58:168–180. doi:10.5004/dwt.2017.0145.
  • Li Z-Q, Wang H-L, Zi L-Y, et al. Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation. Ceram Int. 2015;41:10634–10643. doi:10.1016/j.ceramint.2015.04.163.
  • Rao Y, Zhang Y, Li A, et al. Photocatalytic activity of G-TiO2@ Fe3O4 with persulfate for degradation of alizarin red S under visible light. Chemosphere. 2021;266:129236.
  • Afzal S, Julkapli NM, Mun LK. Visible light active TiO2/CS/Fe3O4 for nitrophenol degradation: studying impact of TiO2, CS and Fe3O4 loading on the optical and photocatalytic performance of nanocomposite. Mate Sci Semicond Process. 2021;131:105891.
  • González-Quiles R, de Andrés JM, Rodríguez-Chueca J. Study of the photocatalytic activity of TiO2 and Fe2+ in the activation of peroxymonosulfate. Water. 2021;13:2860. doi:10.3390/w13202860.
  • Malakootian M, Nasiri A, Amiri Gharaghani M. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem Eng Commun. 2020;207:56–72. doi:10.1080/00986445.2019.1573168.
  • Wang Q, Rao P, Li G, et al. Degradation of imidacloprid by UV-activated persulfate and peroxymonosulfate processes: kinetics, impact of key factors and degradation pathway. Ecotoxicol Environ Saf. 2020;187:109779.
  • Tang S, Wang Z, Yuan D, et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate. Int J Electrochem Sci. 2020;15:2470–2480. doi:10.20964/2020.03.09.
  • Golshan M, Kakavandi B, Ahmadi M, et al. Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process feasibility, mechanism and pathway. J Hazard Mater. 2018;359:325–337.
  • Yin Z, Han M, Hu Z, et al. Peroxymonosulfate enhancing visible light photocatalytic degradation of bezafibrate by Pd/g-C3N4 catalysts: The role of sulfate radicals and hydroxyl radicals. Chem Eng J. 2020;390:124532.
  • Nasseh N, Taghavi L, Barikbin B, et al. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. J Cleaner Prod. 2018;179:42–54. doi:10.1016/j.jclepro.2018.01.052.
  • Jalil AT, Dilfy SH, Meza SO, et al. Cuo/ZrO2 nanocomposites: facile synthesis, characterization and photocatalytic degradation of tetracycline antibiotic. J Nanostruct. 2021;11:333–346.
  • Zhuang Y, Wang X, Zhang L, et al. Double-network hydrogel templated FeS/graphene with enhanced PMS activation performance: considering the effect of the template and iron species. Environ Sci Nano. 2020;7:817–828. doi:10.1039/C9EN01391A.
  • Ding Y, Wang X, Fu L, et al. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): recent advances and perspective. Sci Total Environ. 2021;765:142794.
  • Feng Y, Wu D, Deng Y, et al. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanisms. Environ Sci Technol. 2016;50:3119–3127. doi:10.1021/acs.est.5b05974.
  • Xu Y, Ai J, Zhang H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process. J Hazard Mater. 2016;309:87–96. doi:10.1016/j.jhazmat.2016.01.023.
  • Tajareh AV, Ganjidoust H, Ayati B. Synthesis of TiO2/Fe3O4/MWCNT magnetic and reusable nanocomposite with high photocatalytic performance in the removal of colored combinations from water. J Water Environ Nanotechnol. 2019;4:198–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.