139
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of potential inducers to enhance laccase production and evaluating concomitant enzyme immobilisation

, , , , &
Pages 3517-3532 | Received 20 Mar 2023, Accepted 23 May 2023, Published online: 05 Jun 2023

References

  • Alshamsi AMO, Tatan BM, Ashoobi NMS, et al. Emerging pollutants of water supplies and the effect of climate change. Environ Rev. 2022;00:1–22. doi:10.1139/er-2021-0097
  • Adamian Y, Lonappan L, Alokpa K, et al. Recent developments in the immobilization of laccase on carbonaceous supports for environmental applications – a critical review. Front Bioeng Biotechnol. 2021;9:778239. doi:10.3389/fbioe.2021.778239
  • Cabana H, Jones JP, Agathos SN. Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: A review. Eng Life Sci. 2007;7(5):429–456. doi:10.1002/elsc.200700017
  • Zofair SFF, Ahmad S, Hashmi MA, et al. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: significance in sustainable green chemistry. J Environ Manag. 2022;309:114676. doi:10.1016/j.jenvman.2022.114676
  • Brugnari T, Braga DM, dos Santos CSA, et al. Laccases as green and versatile biocatalysts: from lab to enzyme market—an overview. Bioresour Bioprocess. 2021;8:131. doi:10.1186/s40643-021-00484-1
  • Cannatelli MD, Ragauskas AJ. Two decades of laccases: advancing sustainability in the chemical industry. Chem Rec. 2017;17(1):122–140. doi:10.1002/tcr.201600033
  • Arregui L, Ayala M, Gómez-Gil X, et al. Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact. 2019;18(1):200. doi:10.1186/s12934-019-1248-0
  • Nguyen LN, Vu MT, Johir MAH, et al. A novel approach in crude enzyme laccase production and application in emerging contaminant bioremediation. Processes. 2020;8:648. doi:10.3390/pr8060648
  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S. Cost analysis in laccase production. J Environ Manag. 2011;92(11):2907–2912. doi:10.1016/j.jenvman.2011.06.052
  • Brissos V, Borges PT, Núñez-Franco R, et al. Distal mutations shape substrate-binding sites during evolution of a metallo-oxidase into a laccase. ACS Catal. 2022;12(9):5022–5035. doi:10.1021/acscatal.2c00336
  • Guerberoff GK, Camusso CC. Effect of laccase from Trametes versicolor on the oxidative stability of edible vegetable oils. Food Sci Hum Wellness. 2019;8(4):356–361. doi:10.1016/j.fshw.2019.09.003
  • Tarafdar A, Sirohi R, Gaur VK, et al. Engineering interventions in enzyme production: Lab to industrial scale. Bioresour Technol. 2021;326:124771. doi:10.1016/j.biortech.2021.124771
  • Espina G, Atalah J, Blamey JM. Extremophilic oxidoreductases for the industry: five successful examples With promising projections. Front Bioeng Biotechnol. 2021;9:710035. doi:10.3389/fbioe.2021.710035
  • Yang J, Li W, Ng TB, et al. Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol. 2017;8:832. doi:10.3389/fmicb.2017.00832
  • Wang F, Xu L, Zhao L, et al. Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: a review. Microorganisms. 2019;7(12):665. doi:10.3390/microorganisms7120665
  • Hasan S, Anwar Z, Khalid W, et al. Laccase production from local biomass using solid state fermentation. Fermentation. 2023;9:179. doi:10.3390/fermentation9020179
  • Ardila-Leal LD, Alvarado-Ramírez MF, Gutiérrez-Rojas IS, et al. Low-cost media statistical design for laccase rPOXA 1B production in P. pastoris. Heliyon. 2020;6(4):e03852. doi:10.1016/j.heliyon.2020.e03852
  • Leal PP, Hurd CL, Sander SG, et al. Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Sci Rep. 2018;8(1):14763. doi:10.1038/s41598-018-32899-w
  • Vrsanska M, Voberkova S, Langer V, et al. Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes. Molecules. 2016;21(11):1553. doi:10.3390/molecules21111553
  • Songulashvili G, Spindler D, Jimenéz-Tobón GA, et al. Production of a high level of laccase by submerged fermentation at 120-L scale of Cerrena unicolor C-139 grown on wheat bran. C R Biol. 2015;338(2):121–125. doi:10.1016/j.crvi.2014.12.001
  • Gupta A, Jana AK. Production of laccase by repeated batch semi-solid fermentation using wheat straw as substrate and support for fungal growth. Bioprocess Biosyst Eng. 2018;42:499–512. doi:10.1007/s00449-018-2053-6
  • Ba S, Arsenault A, Hassani T, et al. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Crit Rev Biotechnol. 2013;33(4):404–418. doi:10.3109/07388551.2012.725390
  • Bertrand B, Martinez-Morales F, Trejo-Hernandez MR. Fungal laccases: induction and production. Rev Mex Ing Quim. 2013;12(3):473–488
  • Fonseca MI, Molina MA, Benitez SF, et al. Copper improves the production of laccase by Pleurotus Sajor-Caju withability to grow on effluents of the citrus industry. Rev Int Contam Ambie. 2019;36 (1):105–114
  • Copete-Pertuz LS, Alandete-Novoa F, Plácido J, et al. Enhancement of ligninolytic enzymes production and decolorising activity in Leptosphaerulina sp. by co-cultivation with Trichoderma viride and Aspergillus terreus. Sci Total Environ. 2019;646:1536–1545. doi:10.1016/j.scitotenv.2018.07.387
  • Meza JC, Auria R, Lomascolo A, et al. Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3. Enzyme Microb Technol. 2007;41(1-2):162–168. doi:10.1016/j.enzmictec.2006.12.018
  • Eisenman HC, Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol. 2012;93(3):931–940. doi:10.1007/s00253-011-3777-2
  • Mohtashami M, Fooladi J, Haddad-Mashadrizeh A, et al. Molecular mechanism of enzyme tolerance against organic solvents: insights from molecular dynamics simulation. Int J Biol Macromol. 2019;122:914–923. doi:10.1016/j.ijbiomac.2018.10.172
  • Wiśniewska KM, Twarda-Clapa A, Białkowska AM. Novel cold-adapted recombinant laccase KbLcc1 from Kabatiella bupleuri G3 IBMiP as a green catalyst in biotransformation. Int J Mol Sci. 2021;22(17):9593. doi:10.3390/ijms22179593
  • Maghraby YR, El-Shabasy RM, Ibrahim AH, et al. Enzyme immobilization technologies and industrial applications. ACS Omega. 2023;8(6):5184–5196. doi:10.1021/acsomega.2c07560
  • Olah M, Suba S, Boros Z, et al. Lipase B from Candida antarctica immobilized on epoxy-functionalized hollow silica microspheres: efficient biocatalysts for enantiomer selective acylation of alcohols and amines. Period Polytech Chem Eng. 2018;62(4):519–532. doi:10.3311/PPch.12517
  • Mogharabi-Manzari M, Ghahremani MH, Sedaghat T, et al. A laccase heterogeneous magnetic fibrous silica-based biocatalyst for green and one-pot cascade synthesis of chromene derivatives. Eur J Org Chem. 2019: 1741–1747. doi:10.1002/ejoc.201801784
  • Snoch W, Tataruch M, Zastawny O, et al. Hollow silica microspheres as robust immobilization carriers. Bioorg Chem. 2019;93:102813. doi:10.1016/j.bioorg.2019.02.038
  • Arca-Ramos A, Kumar VV, Eibes G, et al. Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environ Sci Pollut Res Int. 2016;23(9):8929–8939. doi:10.1007/s11356-016-6139-x
  • Wang F, Guo C, Yang LR, et al. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresour Technol. 2010;101(23):8931–8935. doi:10.1016/j.biortech.2010.06.115
  • Jankowska K, Ciesielczyk F, Bachosz K, et al. Laccase immobilized onto zirconia-silica hybrid doped with Cu2+ as an effective biocatalytic system for decolorization of dyes. Materials (Basel). 2019;12(8):1252. doi:10.3390/ma12081252
  • Batista-García RA, Sutton T, Jackson SA, et al. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. Plos One. 2017;12(3):e0173750. doi:10.1371/journal.pone.0173750
  • Haroune L, Saibi S, Bellenger JP, et al. Evaluation of the efficiency of Trametes hirsuta for the removal of multiple pharmaceutical compounds under low concentrations relevant to the environment. Bioresour Technol. 2014;171:199–202. doi:10.1016/j.biortech.2014.08.036
  • Kumar VV, Sivanesan S, Cabana H. Magnetic cross-linked laccase aggregates–bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ. 2014;487:830–839. doi:10.1016/j.scitotenv.2014.04.009
  • APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington (DC): American Public Health Association; 2005.
  • Vishnu D, Neeraj G, Swaroopini R, et al. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ Sci Pollut Res Int. 2017;24(22):17993–18009. doi:10.1007/s11356-017-9318-5
  • Buddhika UVA, Savocchia S, Steel CC. Copper induces transcription of BcLCC2 laccase gene in phytopathogenic fungus, Botrytis cinerea. Mycology. 2020;12(1):48–57. doi:10.1080/21501203.2020.1725677
  • Zhuo R, Yuan P, Yang Y, et al. Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase. Biochem Eng J. 2017;117:62–72. doi:10.1016/j.bej.2016.09.016
  • Palmieri G, Giardina P, Bianco C, et al. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol. 2000;66(3):920–924. doi:10.1128/AEM.66.3.920-924.2000
  • Kumari BS, Praveen K, Usha KY, et al. Ligninolytic behavior of the white-rot fungus Stereum ostrea under influence of culture conditions, inducers, and chlorpyrifos. Biotech. 2019;9(11):424. doi:10.1007/s13205-019-1955-6
  • Cavallazzi JR, Kasuya CM, Soares MA. Screening of inducers for laccase production by Lentinula edodes in liquid medium. Braz J Microbiol. 2005;36:383–387. doi:10.1590/S1517-83822005000400015
  • Zhang Q, Zhao L, Li Y, et al. Comparative transcriptomics and transcriptional regulation analysis of enhanced laccase production induced by co-culture of Pleurotus eryngii var. ferulae with Rhodotorula mucilaginosa. Appl Microbiol Biotechnol. 2020;104(1):241–255. doi:10.1007/s00253-019-10228-z
  • Schneider WDH, Costa PC, Fontana RC, et al. Upscale and characterization of lignin-modifying enzymes from Marasmiellus palmivorus VE111 in a bioreactor under parameter optimization and the effect of inducers. J Biotechnol. 2019;295:1–8. doi:10.1016/j.jbiotec.2019.03.002
  • Couto SR, Toca-Herrera JL. Laccase production at reactor scale by filamentous fungi. Biotechnol Adv. 2007;25(6):558–569. doi:10.1016/j.biotechadv.2007.07.002
  • Hernandez CA, Sandoval N, Mallerman J, et al. Ethanol induction of laccase depends on nitrogen conditions of Pycnoporus sanguineus. Electron J Biotechnol. 2015;18:327–332. doi:10.1016/j.ejbt.2015.05.008
  • Meza JC, Lomascolo A, Casalot L, et al. Laccase production by Pycnoporus cinnabarinus grown on sugar-cane bagasse: influence of ethanol vapours as inducer. Process Biochem. 2005;40(2005):3365–3371. doi:10.1016/j.procbio.2005.03.004
  • Lomascolo A, Record E, Herpoël-Gimbert I, et al. Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer. J Appl Microbiol. 2003;94(4):618–624. doi:10.1046/j.1365-2672.2003.01879.x
  • Goma OM. Ethanol induced response in Phanerochaete chrysosporium and its role in the decolorization of triarylmethane dye. Ann Microbiol. 2011;62:1403–1409. doi:10.1007/s13213-011-0390-7
  • Yin L, Ye J, Kuang S, et al. Induction, purification, and characterization of a thermo and pH stable laccase from Abortiporus biennis J2 and its application on the clarification of litchi juice. Biosci, Biotechnol, Biochem. 2017;81(5):1033–1040. doi:10.1080/09168451.2017.1279850
  • Khatri NK, Hoffmann F. Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris. Biotechnol Bioeng. 2006;93(5):871–879. doi:10.1002/bit.20773
  • Zhang T, Huang B, Elzatahry AA, et al. Synthesis of podlike magnetic mesoporous silica nanochains for use as enzyme support and nanostirrer in biocatalysis. ACS Appl Mater Interfaces. 2020;12(15):17901–17908. doi:10.1021/acsami.0c03220
  • Jiménez-Barrera D, Chan-Cupul W, Fan Z, et al. Fungal co-culture increases ligninolytic enzyme activities: statistical optimization using response surface methodology. Prep Biochem Biotechnol. 2018;48(9):787–798. doi:10.1080/10826068.2018.1509084
  • Chang K, Teng T, Fu C, et al. Improving biodegradation of Bisphenol A by immobilization and inducer. Process Saf Environ Prot. 2019: 128–134. doi:10.1016/j.psep.2019.05.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.